login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052541 Expansion of 1/(1-3*x-x^3). 7
1, 3, 9, 28, 87, 270, 838, 2601, 8073, 25057, 77772, 241389, 749224, 2325444, 7217721, 22402387, 69532605, 215815536, 669848995, 2079079590, 6453054306, 20029011913, 62166115329, 192951400293, 598883212792, 1858815753705, 5769398661408, 17907079197016 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A transform of A000244 under the mapping mapping g(x)->(1/(1-x^3))g(x/(1-x^3)). - Paul Barry, Oct 20 2004

a(n) equals the number of n-length words on {0,1,2,3} such that 0 appears only in a run which length is a multiple of 3. - Milan Janjic, Feb 17 2015

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 475

Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3

José L. Ramírez, Víctor F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informaticae, 45 (2015) pp. 91-105.

Index entries for linear recurrences with constant coefficients, signature (3,0,1).

FORMULA

G.f.: 1/(1 - 3*x - x^3).

a(n) = 3*a(n-1) + a(n-3), with a(0)=1, a(1)=3.

a(n) = Sum_{alpha = RootOf(-1+3*x+x^3)} (1/15)*(4 + alpha + 2*alpha^2) * alpha^(-n-1).

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k) * 3^(n-3*k). - Paul Barry, Oct 20 2004

MAPLE

spec := [S, {S=Sequence(Union(Z, Z, Z, Prod(Z, Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..30);

MATHEMATICA

CoefficientList[Series[x/(1-3*x-x^3), {x, 0, 30}], x] (* Zerinvary Lajos, Mar 29 2007 *)

LinearRecurrence[{3, 0, 1}, {1, 3, 9}, 30] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(x/(1-3*x-x^3)) \\ G. C. Greubel, May 09 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x/(1-3*x-x^3) )); // G. C. Greubel, May 09 2019

(Sage) (x/(1-3*x-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019

(GAP) a:=[1, 3, 9];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-3]; od; a; # G. C. Greubel, May 09 2019

CROSSREFS

Cf. A076264.

Sequence in context: A005354 A084084 A091140 * A024738 A263841 A052939

Adjacent sequences:  A052538 A052539 A052540 * A052542 A052543 A052544

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 16:30 EDT 2019. Contains 327242 sequences. (Running on oeis4.)