OFFSET
1,2
COMMENTS
Sum of i-th and j-th triangular numbers, where i=A096029(n), j=A096030(n); i.e., a(n) = A000217(A096029(n)) + A000217(A096030(n)). - Lekraj Beedassy, Jun 16 2004
For every k in the sequence, there is exactly 1 square number that can be subtracted to leave a pronic (A002378). E.g., 27 - 25 = 2, 99 - 9 = 90. - Jon Perry, Nov 06 2010
a(k) appears in the o.g.f. for floor(A002144(k)*j^2/4), j >= 0, for k >= 1: x*(a(k)*(1 + x^2) + b(k)*x)/((1 - x)^3*(1 + x)), together with b(k) = (A002144(k) + 1)/2 = A119681(k). - Wolfdieter Lang, Aug 07 2013
LINKS
Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Wilson's Theorem.
FORMULA
a(n) = (A002144(n)-1)/4.
MAPLE
a := []; for k from 1 to 500 do if isprime(4*k+1) then a := [op(a), k]; fi; od: A005098 := k->a[k];
MATHEMATICA
Select[Range[200], PrimeQ[4# + 1] &] (* Harvey P. Dale, Apr 20 2011 *)
PROG
(Magma) [k: k in [0..10000] | IsPrime(4*k+1)] // Vincenzo Librandi, Nov 18 2010
(PARI) is(k)=isprime(4*k+1) \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a005098 = (`div` 4) . (subtract 1) . a002144
-- Reinhard Zumkeller, Mar 17 2013
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Ray Chandler, Jun 26 2004
Edited by Charles R Greathouse IV, Mar 17 2010
STATUS
approved