This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004614 Numbers that are divisible only by primes congruent to 3 mod 4. 16
 1, 3, 7, 9, 11, 19, 21, 23, 27, 31, 33, 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 83, 93, 99, 103, 107, 121, 127, 129, 131, 133, 139, 141, 147, 151, 161, 163, 167, 171, 177, 179, 189, 191, 199, 201, 207, 209, 211, 213, 217, 223, 227, 231, 237, 239, 243, 249, 251 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers whose factorization as Gaussian integers is the same as their factorization as integers. - Franklin T. Adams-Watters, Oct 14 2005 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 FORMULA Product(A079261(A027748(a(n),k)): k=1..A001221(a(n))) = 1. - Reinhard Zumkeller, Jan 07 2013 MATHEMATICA ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 3 &) /@ FactorInteger[n][[All, 1]]; Select[Range[251], ok] (* Jean-François Alcover, May 05 2011 *) PROG (PARI) for(n=1, 1000, if(sumdiv(n, d, isprime(d)*if((d-3)%4, 1, 0))==0, print1(n, ", "))) (PARI) forstep(n=1, 999, 2, for(j=1, #t=factor(n)[, 1], t[j]%4==1 && next(2)); print1(n", ")) \\ M. F. Hasler, Feb 26 2008 (PARI) list(lim)=my(v=List([1]), cur, idx, newIdx); forprime(p=3, lim, if(p%4>1, listput(v, p))); for(i=2, #v, cur=v[i]; idx=1; while(v[idx]*cur <= lim, my(newidx=#v+1, t); for(j=idx, #v, t=cur*v[j]; if(t<=lim, listput(v, t))); idx=newidx)); Set(v) \\ Charles R Greathouse IV, Feb 06 2018 (MAGMA) [n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 3}]; // Vincenzo Librandi, Aug 21 2012 (Haskell) a004614 n = a004614_list !! (n-1) a004614_list = filter (all (== 1) . map a079261 . a027748_row) [1..] -- Reinhard Zumkeller, Jan 07 2013 CROSSREFS Cf. A004613. Sequence in context: A156770 A088630 A129747 * A112398 A197504 A167800 Adjacent sequences:  A004611 A004612 A004613 * A004615 A004616 A004617 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)