login
A004615
Divisible only by primes congruent to 1 mod 5.
10
1, 11, 31, 41, 61, 71, 101, 121, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 341, 401, 421, 431, 451, 461, 491, 521, 541, 571, 601, 631, 641, 661, 671, 691, 701, 751, 761, 781, 811, 821, 881, 911, 941
OFFSET
1,2
COMMENTS
Also numbers with all divisors ending with digit 1.
Union of number 1, A030430 and A068872. - Jaroslav Krizek, Feb 12 2012
Also numbers with all divisors ending with the same digit; as 1 divides all the integers, this digit is necessarily 1 (see first comment); hence, for these numbers m: A330348(m) = A000005(m). - Bernard Schott, Nov 09 2020
LINKS
MATHEMATICA
ok[1]=True; ok[n_]:=And@@(Mod[#, 5]==1&)/@FactorInteger[n][[All, 1]]; Select[Range[2000], ok] (* Vincenzo Librandi, Aug 21 2012 *)
Select[Range[1000], Union[Mod[#, 5]&/@FactorInteger[#][[All, 1]]]=={1}&] (* Harvey P. Dale, Apr 19 2019 *)
PROG
(Haskell)
a004615 n = a004615_list !! (n-1)
a004615_list = filter (all (== 1) . (map (`mod` 5) . a027748_row)) [1..]
-- Reinhard Zumkeller, Apr 16 2012
(Magma) [n: n in [1..1500] | forall{d: d in PrimeDivisors(n) | d mod 5 eq 1}]; // Vincenzo Librandi, Aug 21 2012
(PARI) is(n)=#select(p->p%5!=1, factor(n)[, 1])==0 \\ Charles R Greathouse IV, Mar 11 2014
CROSSREFS
Cf. A027748, A030430 (primes), A068872 (composites).
Cf. A010879, A027750, A002808, A330348, A338784 (subsequence).
Sequence in context: A090756 A038351 A068871 * A327346 A030430 A059313
KEYWORD
nonn
EXTENSIONS
A206291 merged in by Franklin T. Adams-Watters, Sep 21 2012
STATUS
approved