login
Numbers that are divisible only by primes congruent to 3 mod 4.
34

%I #61 Aug 21 2024 15:01:48

%S 1,3,7,9,11,19,21,23,27,31,33,43,47,49,57,59,63,67,69,71,77,79,81,83,

%T 93,99,103,107,121,127,129,131,133,139,141,147,151,161,163,167,171,

%U 177,179,189,191,199,201,207,209,211,213,217,223,227,231,237,239,243,249,251

%N Numbers that are divisible only by primes congruent to 3 mod 4.

%C Numbers whose factorization as Gaussian integers is the same as their factorization as integers. - _Franklin T. Adams-Watters_, Oct 14 2005

%C Closed under multiplication. Primitive elements are the primes of form 4*k+3. - _Gerry Martens_, Jun 17 2020

%H T. D. Noe, <a href="/A004614/b004614.txt">Table of n, a(n) for n = 1..10000</a>

%H Gareth A. Jones and Alexander K. Zvonkin, <a href="https://arxiv.org/abs/2401.00270">A number-theoretic problem concerning pseudo-real Riemann surfaces</a>, arXiv:2401.00270 [math.NT], 2023. See page 4.

%F Product(A079261(A027748(a(n),k)): k=1..A001221(a(n))) = 1. - _Reinhard Zumkeller_, Jan 07 2013

%p q:= n-> andmap(i-> irem(i[1], 4)=3, ifactors(n)[2]):

%p select(q, [$1..500])[]; # _Alois P. Heinz_, Jan 13 2024

%t ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 3 &) /@ FactorInteger[n][[All, 1]]; Select[Range[251], ok] (* _Jean-François Alcover_, May 05 2011 *)

%t A004614 = Select[Range[251],Length@Reduce[s^2 + t^2 == s # && s # > t > 0, Integers] == 0 &] (* _Gerry Martens_, Jun 05 2020 *)

%o (PARI) for(n=1,1000,if(sumdiv(n,d,isprime(d)*if((d-3)%4,1,0))==0, print1(n,",")))

%o (PARI) forstep(n=1,999,2,for(j=1,#t=factor(n)[,1],t[j]%4==1 && next(2)); print1(n", ")) \\ _M. F. Hasler_, Feb 26 2008

%o (PARI) list(lim)=my(v=List([1]),cur,idx,newIdx); forprime(p=3,lim, if(p%4>1, listput(v,p))); for(i=2,#v, cur=v[i]; idx=1; while(v[idx]*cur <= lim, my(newidx=#v+1,t); for(j=idx, #v, t=cur*v[j]; if(t<=lim, listput(v, t))); idx=newidx)); Set(v) \\ _Charles R Greathouse IV_, Feb 06 2018

%o (Magma) [n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 3}]; // _Vincenzo Librandi_, Aug 21 2012

%o (Haskell)

%o a004614 n = a004614_list !! (n-1)

%o a004614_list = filter (all (== 1) . map a079261 . a027748_row) [1..]

%o -- _Reinhard Zumkeller_, Jan 07 2013

%o (Python)

%o from itertools import count, islice

%o from sympy import primefactors

%o def A004614_gen(startvalue=1): # generator of terms >= startvalue

%o return filter(lambda n: n&1 and all(p&2 for p in primefactors(n>>(~n & n-1).bit_length())), count(max(startvalue,1)))

%o A004614_list = list(islice(A004614_gen(),30)) # _Chai Wah Wu_, Aug 21 2024

%Y Cf. A004613.

%Y Cf. A002145 (subsequence of primes).

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_