OFFSET
0,2
COMMENTS
This is the maximal value of the sum of the entries of any n X n Hadamard matrix (cf. A019442).
REFERENCES
Brown, Thomas A. and Spencer, Joel H., Minimization of +-1 matrices under line shifts. Colloq. Math. 23 (1971), 165-171, 177 (errata).
N. Farmakis and S. Kounias, The excess of Hadamard matrices and optimal designs, Discrete Mathematics, 67 (1987), 165-176. [From William P. Orrick, Mar 26 2009]
S. Kounias and N. Farmakis, On the excess of Hadamard matrices, Discrete Mathematics, 68 (1988), 59-69. [From William P. Orrick, Mar 26 2009]
Seberry, Jennifer and Yamada, Mieko; Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. R. Best, The excess of a Hadamard matrix, Indagat. Mathem. (Proceedings) 80 (1977), no. 5., 357-361
FORMULA
n^2*2^(-n)*binomial(n,n/2) <= a(n) <= n*sqrt(n).
Contribution from William P. Orrick, Mar 26 2009: (Start)
a(n/4) <= n(2m+1)+8[n/4(n/4-1)/(2(2m+1))], if 4m^2<=n/4<=4m^2+2m+1 or 4m^2+6m+3<=n/4<=4(m+1)^2,
a(n/4) <= 8[nm/4+1/2[n/4(n/4-1)/(2m)]-(n+4)/8]+n+4, if 4m^2+2m+1<n/4<=4m^2+4m+1,
a(n/4)<=8[nm/4+1/2[n/4(n/4-1)/(2(m+1))]+(n-4)/8]+n+4, if 4m^2+4m+1<=n/4<4m^2+6m+3.
[x] denotes the integer part. (See Kounias and Farmakis, 1988.) (End)
CROSSREFS
KEYWORD
nonn,hard,more,nice
AUTHOR
EXTENSIONS
a(7)-a(14) from William P. Orrick, Mar 26 2009
STATUS
approved