login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004116 a(n) = floor((n^2 + 6n - 3)/4).
(Formerly M2524)
9
1, 3, 6, 9, 13, 17, 22, 27, 33, 39, 46, 53, 61, 69, 78, 87, 97, 107, 118, 129, 141, 153, 166, 179, 193, 207, 222, 237, 253, 269, 286, 303, 321, 339, 358, 377, 397, 417, 438, 459 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n)-3 is the maximal size of a regular triangulation of a prism over a regular n-gon.

Solution to a postage stamp problem with 2 denominations.

This sequence is half the degree of the denominator of a certain sequence of rational polynomials defined in the referenced paper by G. Alkauskas. Although this fact is not documented in the paper it can be verified by running the author's code at http://www.alkauskas.puslapiai.lt/MP3/gkw.txt and evaluating degree(denom(...)). - Stephen Crowley, Sep 18 2011

From Griffin N. Macris, Jul 19 2016: (Start)

Consider quadratic functions x^2+ax+b. Then a(n) is the number of these functions with 0 <= a+b < n, modulo changing x to x+c for a constant c.

For a(6)=17, four functions are excluded, because:

x^2 + 2x + 1 = (x+1)^2 + 0(x+1) + 0

x^2 + 2x + 2 = (x+1)^2 + 0(x+1) + 1

x^2 + 2x + 3 = (x+1)^2 + 0(x+1) + 2

x^2 + 3x + 2 = (x+1)^2 + 1(x+1) + 0 (End)

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

G. Alkauskas, Recursive construction of a series converging to the eigenvalues of the Gauss-Kuzmin-Wirsing operator, arXiv:1004.1783 [math.NT], 2010-2012.

R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.

M. Develin, Maximal triangulations of a regular prism, arXiv:math/0309220 [math.CO], 2003.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 420

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

David Singmaster, David Fielker, N. J. A. Sloane, Correspondence, August 1979

Wikipedia, Gauss-Kuzmin-Wirsing operator

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = floor((1/4)*n^2 + (3/2)*n + 1/4) - 1.

a(n) = (1/8)*(-1)^(n+1) - 7/8 + (3/2)*n + (1/4)*n^2.

From Ilya Gutkovskiy, Jul 20 2016: (Start)

O.g.f.: x*(1 + x - x^3)/((1 - x)^3*(1 + x)).

E.g.f.: (8 + sinh(x) - cosh(x) + (2*x^2 + 14*x - 7)*exp(x))/8.

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).

a(n) = Sum_{k=0..n-1} A266977(k). (End)

MAPLE

A004116:=(-1-z+z**3)/(z+1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation

MATHEMATICA

Table[Floor[(n^2 + 6 n - 3)/4], {n, 40}] (* or *)

LinearRecurrence[{2, 0, -2, 1}, {1, 3, 6, 9}, 40] (* Michael De Vlieger, Jul 19 2016 *)

PROG

(PARI) a(n)=(n^2+6*n-3)>>2

(MAGMA) [Floor( (n^2 + 6*n - 3)/4 ) : n in [1..50]]; // Vincenzo Librandi, Sep 19 2011

CROSSREFS

Sequence in context: A109512 A025205 A024190 * A004129 A219646 A185173

Adjacent sequences:  A004113 A004114 A004115 * A004117 A004118 A004119

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 15:43 EST 2017. Contains 295905 sequences.