login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004119 a(0)=1; thereafter a(n) = 3*2^(n-1)+1.
(Formerly M3308)
18
1, 4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, 3145729, 6291457, 12582913, 25165825, 50331649, 100663297, 201326593, 402653185, 805306369, 1610612737, 3221225473, 6442450945, 12884901889 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also Pisot sequence L(4,7) (cf. A008776).

Alternatively, define the sequence S(a(1),a(2)) by: a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n > 0. This is S(4,7).

a(n) = number of terms of the arithmetic progression with first term 2^(2n-1) and last term 2^(2n+1). So common difference is 2^n. E.g., a(2)=7 corresponds to (8,12,16,20,24,28,32). - Augustine O. Munagi, Feb 21 2007

Equals binomial transform of [1, 3, 0, 3, 0, 3, 0, 3,...]. - Gary W. Adamson, Aug 27 2010

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993

S. W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663.

S. W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663. [Annotated scanned copy]

A. O. Munagi and T. Shonhiwa, On the partitions of a number into arithmetic progressions, J. Integer Sequences, 11 (2008), #08.5.4.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (3, -2).

FORMULA

a(n) = 3a(n-1) - 2a(n-2).

For n>3, a(3)=13, a(n)= a(n-1)+2*floor(a(n-1)/2). - Benoit Cloitre, Aug 14 2002

For n>=1, a(n) = A049775(n+1)/2^(n-2). For n>=2, a(n) = 2a(n-1)-1; see also A000051. - Philippe Deléham, Feb 20 2004

O.g.f.: -(-1-x+3*x^2)/((2*x-1)*(x-1)). - R. J. Mathar, Nov 23 2007

For n>0, a(n) = 2*a(n-1)-1. - Vincenzo Librandi, Dec 16 2015

MAPLE

A004119:=-(-1-z+3*z**2)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation

MATHEMATICA

s=4; lst={1, s}; Do[s=s+(s-1); AppendTo[lst, s], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 30 2009 *)

Prepend[Table[3*2^n + 1, {n, 0, 32}], 1] (* or *)

{1}~Join~LinearRecurrence[{3, -2}, {4, 7}, 33] (* Michael De Vlieger, Dec 16 2015 *)

PROG

(PARI) a(n)=3<<n+1 \\ Charles R Greathouse IV, Sep 28 2015

(MAGMA) [1] cat [n le 1 select 4 else 2*Self(n-1)-1: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015

CROSSREFS

Cf. A049988, A049775, A000051, A008776.

A181565 is an essentially identical sequence.

For primes see A002253 and A039687.

Sequence in context: A118334 A205538 A181565 * A074864 A074865 A072683

Adjacent sequences:  A004116 A004117 A004118 * A004120 A004121 A004122

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, R. K. Guy

EXTENSIONS

Edited by N. J. A. Sloane, Dec 16 2015 at the suggestion of Bruno Berselli.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 19:52 EDT 2017. Contains 290906 sequences.