login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004105 Number of point-self-dual nets with 2n nodes. Also number of directed 2-multigraphs with loops on n nodes.
(Formerly M3153)
8
1, 3, 45, 3411, 1809459, 7071729867, 208517974495911, 47481903377454219975, 85161307642554753639601848, 1221965550839348597865127102714827, 142024245093355901785105779901319683262778, 135056692539998733060710198802224149631056479068139 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
Also nonisomorphic relations on 3-state logic.
REFERENCES
F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson and Alois P. Heinz, Table of n, a(n) for n = 0..40 (terms n = 1..13 from R. W. Robinson)
Frank Harary, Edgar M. Palmer, Robert W. Robinson, Allen J. Schwenk, Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
FORMULA
a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/ (1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 3^Sum_{i, j>=1} (gcd(i,j)*s_i*s_j).
MATHEMATICA
Prepend[Table[CycleIndex[Join[PairGroup[SymmetricGroup[n], Ordered], Permutations[Range[n^2-n+1, n^2]], 2], s]/.Table[s[i]->3, {i, 1, n^2-n}], {n, 2, 7}], 1] (* Geoffrey Critzer, Oct 20 2012 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
a[n_] := (s=0; Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!);
Array[a, 15, 0] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i])}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
(Python)
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A004105(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))<<1)+sum(q*r**2 for q, r in p.items())), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 10 2024
CROSSREFS
Sequence in context: A198952 A099168 A227379 * A060336 A268196 A057863
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Jan 14 2000
Formula from Christian G. Bower, Jan 06 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 16 09:22 EDT 2024. Contains 375173 sequences. (Running on oeis4.)