login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004102
Number of signed graphs with n nodes. Also number of 2-multigraphs on n nodes.
(Formerly M2874)
20
1, 1, 3, 10, 66, 792, 25506, 2302938, 591901884, 420784762014, 819833163057369, 4382639993148435207, 64588133532185722290294, 2638572375815762804156666529, 300400208094064113266621946833097, 95776892467035669509813163910815022152
OFFSET
0,3
COMMENTS
A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
REFERENCES
F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 1..22 from R. W. Robinson)
M. Adamaszek, The smallest nonevasive graph property, Disc. Mathem. Graph Theory 34 (2014) 857
Edward A. Bender and E. Rodney Canfield, Enumeration of connected invariant graphs, Journal of Combinatorial Theory, Series B 34.3 (1983): 268-278. See p. 273.
J. Cummings, D. Kral, F. Pfender, K. Sperfeld et al., Monochromatic triangles in three-coloured graphs, arXiv preprint arXiv:1206.1987 [math.CO]. 2012. - From N. J. A. Sloane, Nov 25 2012
Harary, Frank; Palmer, Edgar M.; Robinson, Robert W.; Schwenk, Allen J.; Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
R. W. Robinson & N. J. A. Sloane, Correspondence, 1970-1980
FORMULA
Euler transform of A053465. - Andrew Howroyd, Sep 25 2018
MATHEMATICA
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 16, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
(Python)
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A004102(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024
CROSSREFS
A column of A063841.
Cf. A053465.
Sequence in context: A306187 A009400 A217388 * A072638 A262843 A080526
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Vladeta Jovovic, Jan 06 2000
a(0)=1 prepended and a(15) added by Andrew Howroyd, Sep 25 2018
STATUS
approved