This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053516 Number of directed 4-multigraphs with loops on n nodes. 5
 5, 325, 327125, 6360324375, 2483590604688125, 20211024423069510171875, 3524517841661451239027963515625, 13444967478414031326768049544880110156250, 1139744010069698074379093986222808985702884783203125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..30 MATHEMATICA permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v]; a[n_] := (s=0; Do[s += permcount[p]*5^edges[p], {p, IntegerPartitions[n]}]; s/n!); Array[a, 15] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *) PROG (PARI) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i])} a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*5^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017 CROSSREFS Cf. A000595, A004105, A001374. Sequence in context: A212041 A251696 A274306 * A085523 A292687 A152425 Adjacent sequences:  A053513 A053514 A053515 * A053517 A053518 A053519 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Jan 14 2000 EXTENSIONS a(9) from Andrew Howroyd, Oct 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:08 EDT 2019. Contains 322381 sequences. (Running on oeis4.)