OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The bcc lattice is also called the coweight lattice A^*_3 (or D^*_3), dual to the root lattice A_3 (or D_3, or the fcc lattice), or the permutohedral lattice A^*_3. - Andrey Zabolotskiy, Mar 08 2020
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Cannon, Table of n, a(n) for n = 0..10000
S. Ahlgren, The sixth, eighth, ninth and tenth powers of Ramanujan's theta function, Proc. Amer. Math. Soc., 128 (1999), 1333-1338; F_4(q).
R. J. Mathar, Hierarchical Subdivision of the Simple Cubic Lattice, arXiv preprint arXiv:1309.3705 [math.MG], 2013.
G. Nebe and N. J. A. Sloane, Home page for this lattice
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Theta Series
FORMULA
subs(q=q^2, ph)^3+(2*sqrt(q))^3*subs(q=q^4, ps)^3, where ps = A010054 = Sum_{k=0..infinity} q^(k*(k+1)/2), ph = A000122 = Sum_{k=-infinity, infinity} q^(k^2).
Expansion of phi(q^4)^3 + 8 * q^3 * psi(q^8)^3 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Oct 25 2006
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A005875(n).
Expansion of theta_3(q)^3 + theta_2(q)^3 in powers of q^(1/4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004015.
a(8*n) = A004015(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 4) = 2 * A045826(n). - Michael Somos, Jul 19 2015
EXAMPLE
G.f. = 1 + 8*x^3 + 6*x^4 + 12*x^8 + 24*x^11 + 8*x^12 + 6*x^16 + 24*x^19 + 24*x^20 + ...
G.f. = 1 + 8*q^(3/2) + 6*q^2 + 12*q^4 + 24*q^(11/2) + 8*q^6 + 6*q^8 + 24*q^(19/2) + 24*q^10 + 24*q^12 + 32*q^(27/2) + ...
MAPLE
M:=100; M1:=M*(M+1)/2; ph:=series(add(q^(k^2), k=-M..M), q, M1): ps:=series(add(q^(k*(k+1)/2), k=0..M), q, M1): t1:=series(subs(q=q^2, ph)^3, q, M1): t2:=series((2*sqrt(q))^3*subs(q=q^4, ps)^3, q, M1): t3:=seriestolist(series(subs(q=q^2, t1+t2), q, M1)): for n from 0 to nops(t3)-1 do lprint(n, t3[n+1]); od:
MATHEMATICA
m = 13; m1 = m*((m + 1)/2); ph[q_] = Series[ Sum[ q^k^2, {k, -m, m}], {q, 0, m1}]; ps[q_] = Series[ Sum[ q^(k*((k + 1)/2)), {k, 0, m}], {q, 0, m1}]; t1[q_] = Normal[ Series[ ph[q^2]^3, {q, 0, m1}]]; t2[q_] = Normal[ Series[ (2*Sqrt[q])^3*ps[q^4]^3, {q, 0, m1}]]; CoefficientList[ Series[ t1[q^2] + t2[q^2], {q, 0, m1}], q] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
(* From version 6 on *) terms=91; f[q_] = LatticeData["BodyCenteredCubic", "ThetaSeriesFunction"][-I Log[q]/Pi]; CoefficientList[Simplify[f[q] + O[q]^terms, q>0], q][[1 ;; terms]] (* Jean-François Alcover, May 15 2013, updated Jul 08 2017 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^4]^3 + EllipticTheta[ 2, 0, x^4]^3, {x, 0, n}]; (* Michael Somos, May 24 2013 *)
PROG
(PARI) {a(n) = if( n<0, 0, if( n%4==0, n/=4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n))^3, n), n%8==3, n\=8; 8*polcoeff( sum(k=0, (sqrtint(8*n+1) - 1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n)))}; /* Michael Somos, Oct 25 2006 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A)^5 / eta(x^4 + A)^2 / eta(x^16 + A)^2)^3 + (2 * x * eta(x^16 + A)^2 / eta(x^8 + A))^3, n))}; /* Michael Somos, May 17 2008 */
(Magma) Basis( ModularForms( Gamma0(8), 3/2), 90) [1]; /* Michael Somos, Sep 04 2014 */
CROSSREFS
Indices of nonzero terms are A004014.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved