login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045828 One fourth of theta series of cubic lattice with respect to face. 19
1, 2, 2, 4, 3, 2, 6, 4, 4, 6, 4, 4, 7, 8, 2, 8, 8, 4, 10, 4, 4, 10, 10, 8, 9, 4, 6, 12, 8, 6, 10, 12, 4, 14, 8, 4, 16, 10, 8, 8, 9, 10, 12, 12, 8, 12, 12, 4, 20, 10, 6, 20, 8, 6, 10, 12, 8, 20, 18, 8, 11, 12, 12, 16, 8, 6, 20, 16, 12, 14, 8, 12, 20, 14, 6, 12, 20, 8, 26, 12, 8, 22, 8, 12, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Number of solutions to n = t1 + t2 + 2*t3 where  t1, t2, t3 are triangular numbers. - Michael Somos, Jan 02 2006

The cubic lattice is the set of triples [a, b, c] where the entries are all integers. A face is centered at a triple where one entry is an integer and the other two are one half an odd integer. - Michael Somos, Jun 29 2012

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^4)^2) / eta(q)^2 in powers of q. - Michael Somos, Jan 02 2006

Expansion of phi(x) * psi(x^2)^2 = psi(x)^2 * psi(x^2) = psi(x)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 29 2012

Euler transform of period 4 sequence [ 2, -1, 2, -3, ...]. - Michael Somos, Mar 05 2003

Convolution of A033761 and A010054. - Michael Somos, Jun 29 2012

EXAMPLE

1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 2*x^5 + 6*x^6 + 4*x^7 + 4*x^8 + 6*x^9 + ...

q + 2*q^3 + 2*q^5 + 4*q^7 + 3*q^9 + 2*q^11 + 6*q^13 + 4*q^15 + 4*q^17 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 1/4 EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x]^2, {x, 0, n + 1/2}] (* Michael Somos, Jun 29 2012 *)

a[ n_] := SeriesCoefficient[ 1/8 EllipticTheta[ 2, 0, x^2] EllipticTheta[ 2, 0, x]^2, {x, 0, 2 n + 1}] (* Michael Somos, Jun 29 2012 *)

QP = QPochhammer; s = (QP[q^2]^3*QP[q^4]^2)/QP[q]^2 + O[q]^90; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 27 2015, adapted from PARI *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^2, n))} /* Michael Somos, Oct 25 2006 */

CROSSREFS

Cf. A005877, A005884, A033761, A010054, A033763, A212885.

Sequence in context: A246815 A246836 A246953 * A058526 A112153 A112154

Adjacent sequences:  A045825 A045826 A045827 * A045829 A045830 A045831

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Michael Somos, Mar 05 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 10:54 EST 2018. Contains 299385 sequences. (Running on oeis4.)