This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045828 One fourth of theta series of cubic lattice with respect to face. 20
 1, 2, 2, 4, 3, 2, 6, 4, 4, 6, 4, 4, 7, 8, 2, 8, 8, 4, 10, 4, 4, 10, 10, 8, 9, 4, 6, 12, 8, 6, 10, 12, 4, 14, 8, 4, 16, 10, 8, 8, 9, 10, 12, 12, 8, 12, 12, 4, 20, 10, 6, 20, 8, 6, 10, 12, 8, 20, 18, 8, 11, 12, 12, 16, 8, 6, 20, 16, 12, 14, 8, 12, 20, 14, 6, 12, 20, 8, 26, 12, 8, 22, 8, 12, 15 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Number of solutions to n = t1 + t2 + 2*t3 where  t1, t2, t3 are triangular numbers. - Michael Somos, Jan 02 2006 The cubic lattice is the set of triples [a, b, c] where the entries are all integers. A face is centered at a triple where one entry is an integer and the other two are one half an odd integer. - Michael Somos, Jun 29 2012 REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^4)^2) / eta(q)^2 in powers of q. - Michael Somos, Jan 02 2006 Expansion of phi(x) * psi(x^2)^2 = psi(x)^2 * psi(x^2) = psi(x)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 29 2012 Euler transform of period 4 sequence [2, -1, 2, -3, ...]. - Michael Somos, Mar 05 2003 Convolution of A033761 and A010054. - Michael Somos, Jun 29 2012 G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = (1/2)^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A212885. - Michael Somos, Sep 08 2018 EXAMPLE G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 2*x^5 + 6*x^6 + 4*x^7 + 4*x^8 + 6*x^9 + ... G.f. = q + 2*q^3 + 2*q^5 + 4*q^7 + 3*q^9 + 2*q^11 + 6*q^13 + 4*q^15 + 4*q^17 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ 1/4 EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x]^2, {x, 0, n + 1/2}]; (* Michael Somos, Jun 29 2012 *) a[ n_] := SeriesCoefficient[ 1/8 EllipticTheta[ 2, 0, x^2] EllipticTheta[ 2, 0, x]^2, {x, 0, 2 n + 1}]; (* Michael Somos, Jun 29 2012 *) QP = QPochhammer; s = (QP[q^2]^3*QP[q^4]^2)/QP[q]^2 + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^2, n))}; /* Michael Somos, Oct 25 2006 */ CROSSREFS Cf. A005877, A005884, A033761, A010054, A033763, A212885. Sequence in context: A246815 A246836 A246953 * A058526 A112153 A112154 Adjacent sequences:  A045825 A045826 A045827 * A045829 A045830 A045831 KEYWORD nonn AUTHOR EXTENSIONS Edited by Michael Somos, Mar 05 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:29 EDT 2019. Contains 328267 sequences. (Running on oeis4.)