login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004010
Theta series of 12-dimensional Coxeter-Todd lattice K_12.
(Formerly M5478)
7
1, 0, 756, 4032, 20412, 60480, 139860, 326592, 652428, 1020096, 2000376, 3132864, 4445532, 7185024, 10747296, 13148352, 21003948, 27506304, 33724404, 48009024, 64049832, 70709184, 102958128, 124782336, 142254252, 189423360, 237588120, 248250240, 344391264
OFFSET
0,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 129.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..500 from N. J. A. Sloane)
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
G. Nebe and N. J. A. Sloane, Home page for this lattice
Eric Weisstein's World of Mathematics, Coxeter-Todd Lattice
Eric Weisstein's World of Mathematics, Theta Series
FORMULA
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 27 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 20 2015
G.f.: (3*a(x)^6 - 4*a(x)^3*b(x)^3 + 4*b(x)^6) / 3 where a(), b() are cubic AGM theta functions. - Michael Somos, Dec 25 2015
EXAMPLE
G.f. = 1 + 756*x^2 + 4032*x^3 + 20412*x^4 + 604890*x^5 + 139860*x^6 + ...
G.f. = 1 + 756*q^4 + 4032*q^6 + 20412*q^8 + 60480*q^10 + 139860*q^12 + 326592*q^14 + 652428*q^16 + 1020096*q^18 + 2000376*q^20 + ...
MAPLE
# Jacobi theta constants th2, th3: maxd := 201: temp0 := trunc(evalf(sqrt(maxd)))+2: a := 0: for i from -temp0 to temp0 do a := a+q^( (i+1/2)^2): od: th2 := series(a, q, maxd); a := 0: for i from -temp0 to temp0 do a := a+q^(i^2): od: th3 := series(a, q, maxd);
# get phi0 and phi1: phi0 := series( subs(q=q^2, th2)*subs(q=q^6, th2)+subs(q=q^2, th3)*subs(q=q^6, th3), q, maxd); phi1 := series( subs(q=q^2, th2)*subs(q=q^6, th3)+subs(q=q^2, th3)*subs(q=q^6, th2), q, maxd);
K_12 := series( subs(q=q^2, phi0)^6+45*subs(q=q^2, phi0)^2*subs(q=q^2, phi1)^4+18*subs(q=q^2, phi1)^6, q, maxd);
MATHEMATICA
maxd = 51; temp0 = Floor[ Sqrt[maxd] ]+2; a = 0; Do[ a=a+q^(i+1/2)^2, {i, -temp0, temp0}]; th2[q_] = Normal[ Series[a, {q, 0, maxd}]]; a = 0; Do[ a=a+q^i^2, {i, -temp0, temp0}]; th3[q_] = Normal[ Series[a, {q, 0, maxd}]]; phi0[q_] = Normal[ Series[ th2[q^2]*th2[q^6] + th3[q^2]*th3[q^6], {q, 0, maxd}]]; phi1[q_] = Normal[ Series[ th2[q^2]*th3[q^6] + th3[q^2]*th2[q^6], {q, 0, maxd}]]; K12 = Series[ phi0[q^2]^6 + 45*phi0[q^2]^2*phi1[q^2]^4 + 18*phi1[q^2]^6, {q, 0, maxd}]; CoefficientList[ K12, q^2 ] (* Jean-François Alcover, Nov 28 2011, translated from Maple *)
a[ n_] := With[ {U1 = QPochhammer[ q]^3, U3 = QPochhammer[ q^3]^3, U9 = QPochhammer[ q^9]^3}, With[ {z = (1 + 9 q U9/U1)^3}, SeriesCoefficient[ (U1^3/U3)^2 (3 z^2 - 4 z + 4) / 3, {q, 0, n}]]]; (* Michael Somos, Dec 25 2015 *)
PROG
(Magma) A := Basis( ModularForms( Gamma1(3), 6), 29); A[1] + 756*A[3]; /* Michael Somos, Dec 20 2015 */
(PARI) {a(n) = my(A, U1, U3, U9, z); if( n<0, 0, A = x * O(x^n); U1 = eta(x + A)^3; U3 = eta(x^3 + A)^3; U9 = eta(x^9 + A)^3; z = (1 + 9 * x * U9/U1)^3; polcoeff( (U1^3/U3)^2 * (3*z^2 - 4*z +4) / 3, n))}; /* Michael Somos, Dec 25 2015 */
CROSSREFS
KEYWORD
easy,nonn,nice
STATUS
approved