login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003816
a(0) = 0, a(n) = a(n-1) XOR -n.
6
0, 1, -1, 4, 0, 5, -1, 8, 0, 9, -1, 12, 0, 13, -1, 16, 0, 17, -1, 20, 0, 21, -1, 24, 0, 25, -1, 28, 0, 29, -1, 32, 0, 33, -1, 36, 0, 37, -1, 40, 0, 41, -1, 44, 0, 45, -1, 48, 0, 49, -1, 52, 0, 53, -1, 56, 0, 57, -1, 60, 0, 61, -1, 64, 0, 65, -1, 68
OFFSET
0,4
FORMULA
G.f.: x*(1-x+3x^2+x^3)/((x^2-1)^2*(x^2+1)).
|a(n)| = n-(-1)^n*|a(n-1)|. - Vladeta Jovovic, Mar 13 2003
a(4n)=0, a(4n+1)=4n+1, a(4n+2)=-1, a(4n+3)=4n+4, n>=0.
From Wesley Ivan Hurt, May 01 2016, May 03 2016: (Start)
a(n) = a(n-2)+a(n-4)-a(n-6) for n>5.
a(n) = (-1)^floor((n-1)/2) * Sum_{i=0..n} i*(-1)^floor(i/2).
a(n) = (n-(n+1)*(-1)^n+(-1)^((2*n+1-(-1)^n)/4))/2. (End)
E.g.f.: (cos(x) + (-1 + 2*x)*cosh(x) - sin(x) + sinh(x))/2. - Ilya Gutkovskiy, May 03 2016
MAPLE
A003816:=n->(n-(n+1)*(-1)^n+(-1)^((2*n+1-(-1)^n)/4))/2: seq(A003816(n), n=0..150); # Wesley Ivan Hurt, May 03 2016
MATHEMATICA
CoefficientList[Series[x*(1 - x + 3 x^2 + x^3)/((x^2 - 1)^2*(x^2 + 1)), {x, 0, 100}], x] (* Wesley Ivan Hurt, May 01 2016 *)
nxt[{n_, a_}]:={n+1, BitXor[a, -n-1]}; -#&/@(NestList[nxt, {0, 0}, 70][[All, 2]]) (* or *) LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, -1, 4, 0, 5}, 70] (* Harvey P. Dale, Oct 16 2019 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; -1, 0, 1, 0, 1, 0]^n*[0; 1; -1; 4; 0; 5])[1, 1] \\ Charles R Greathouse IV, May 02 2016
(Magma) [(n-(n+1)*(-1)^n+(-1)^((2*n+1-(-1)^n) div 4))/2 : n in [0..100]]; // Wesley Ivan Hurt, May 03 2016
CROSSREFS
Cf. A003815.
Sequence in context: A051352 A239122 A195495 * A309214 A309215 A309216
KEYWORD
sign,easy
AUTHOR
STATUS
approved