login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003815 a(0) = 0, a(n) = a(n-1) XOR n. 7
0, 1, 3, 0, 4, 1, 7, 0, 8, 1, 11, 0, 12, 1, 15, 0, 16, 1, 19, 0, 20, 1, 23, 0, 24, 1, 27, 0, 28, 1, 31, 0, 32, 1, 35, 0, 36, 1, 39, 0, 40, 1, 43, 0, 44, 1, 47, 0, 48, 1, 51, 0, 52, 1, 55, 0, 56, 1, 59, 0, 60, 1, 63, 0, 64, 1, 67, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = ABS(A077140(n)) for n>0. - Reinhard Zumkeller, Oct 09 2007

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = n+(-1)^n*a(n-1). - Vladeta Jovovic, Mar 13 2003

a(0)=0, a(4n+1)=1, a(4n+2)=4n+3, a(4n+3)=0, a(4n+4)=4n+4, n>=0.

a(n) = f(n,0) with f(n,x) = if n=0 then x else if x is even then f(n-1,x+n) else f(n-1,x-n). - Reinhard Zumkeller, Oct 09 2007

G.f.: x*(1+3*x-x^2+x^3)/((1-x^4)*(1-x^2)). - Vincenzo Librandi, Oct 12 2013 *)

MAPLE

(1+3*x-x^2+x^3)*x/(1-x^4)/(1-x^2);

MATHEMATICA

an = 0; Reap[ For[i = 0, i <= 100, i++, an = BitXor[an, i]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Oct 11 2013, translated fom Pari *)

CoefficientList[Series[x (1 + 3 x - x^2 + x^3)/((1 - x^4) (1 - x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 12 2013 *)

PROG

(PARI) print1(an=0); for( i=1, 100, print1(", ", an=bitxor(an, i))) \\ M. F. Hasler, Oct 20 2008

CROSSREFS

Cf. A003816.

Cf. A077140 ; A145768. [From M. F. Hasler, Oct 20 2008]

Sequence in context: A195084 A138376 A077140 * A131486 A127445 A081170

Adjacent sequences:  A003812 A003813 A003814 * A003816 A003817 A003818

KEYWORD

nonn,base

AUTHOR

Marc LeBrun

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 05:09 EDT 2015. Contains 261118 sequences.