login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003814 Numbers n such that the continued fraction for sqrt(n) has odd period length (values of n). 14
2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All primes of the form 4k + 1 are here. - T. D. Noe, Mar 19 2012

These numbers have no prime factors of the form 4k + 3. - Thomas Ordowski, Jul 01 2013

This sequence is a proper subsequence of the so-called 1-happy number products A007969. See the W. Lang link there, eq. (1), with B = 1, C = a(n), also with a table at the end. This is due to the soluble Pell equation R^2 - C*S^2 = -1 for C = a(n). See e.g., Perron, Satz 3.18. on p. 93, and the table on p. 91 with the numbers D of the first column that do not have a number in brackets in the second column (Teilnenner von sqrt(D)). - Wolfdieter Lang, Sep 19 2015

REFERENCES

O. Perron, Die Lehre von den Kettenbr├╝chen, Band I, Teubner Verlagsgesellschaft, Stuttgart, 1954.

Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!).

LINKS

T. D. Noe and Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

S. R. Finch, Class number theory [Cached copy, with permission of the author]

P. J. Rippon and H. Taylor, Even and odd periods in continued fractions of square roots, Fibonacci Quarterly 42, May 2004, pp. 170-180.

MAPLE

isA003814 := proc(n)

    local cf, p ;

    if issqr(n) then

        return false;

    end if;

    for p in numtheory[factorset](n) do

        if modp(p, 4) = 3 then

            return false;

        end if;

    end do:

    cf := numtheory[cfrac](sqrt(n), 'periodic', 'quotients') ;

    type( nops(op(2, cf)), 'odd') ;

end proc:

A003814 := proc(n)

    option remember;

    if n = 1 then

        2;

    else

        for a from procname(n-1)+1 do

            if isA003814(a) then

                return a;

            end if;

        end do:

    end if;

end proc:

seq(A003814(n), n=1..40) ; # R. J. Mathar, Oct 19 2014

MATHEMATICA

Select[Range[100], ! IntegerQ[Sqrt[#]] && OddQ[Length[ContinuedFraction[Sqrt[#]][[2]]]] &] (* T. D. Noe, Mar 19 2012 *)

PROG

(PARI)

cyc(cf) = {

  if(#cf==1, return([])); \\ There is no cycle

  my(s=[]);

  for(k=2, #cf,

    s=concat(s, cf[k]);

    if(cf[k]==2*cf[1], return(s)) \\ Cycle found

  );

  0 \\ Cycle not found

}

select(n->#cyc(contfrac(sqrt(n)))%2==1, vector(400, n, n)) \\ Colin Barker, Oct 19 2014

CROSSREFS

Cf. A010333, A003654, A007969.

Cf. A031396.

Cf. A206586 (period has positive even length).

Sequence in context: A281292 A145017 A031396 * A003654 A271787 A047617

Adjacent sequences:  A003811 A003812 A003813 * A003815 A003816 A003817

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Walter Gilbert

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 22:38 EST 2019. Contains 320328 sequences. (Running on oeis4.)