login
A002554
Numerators of coefficients for numerical differentiation.
(Formerly M4034 N1676)
2
1, -5, 259, -3229, 117469, -7156487, 2430898831, -60997921, 141433003757, -25587296781661, 51270597630767, -6791120985104747, 3400039831130408821, -15317460638921852507, 25789165074168004597399, -1550286106708510672406629, 24823277118070193095631689
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 23.
FORMULA
a(n) is the numerator of (-1)^(n-1)*Cn-1{1^2..(2n-1)^2}/((2n)!*2^(2n-3)), where Cn{1^2..(2n+1)^2} equals 1 when n=0, otherwise it is the sum of the products of all possible combinations, of size n, of the numbers (2k+1)^2 with k=0,1,...,n. - Ruperto Corso, Dec 15 2011
a(n) = numerator(A001824(n-1)*(-1)^(n-1)/(2^(2*n-3)*(2*n)!)). - Sean A. Irvine, Mar 29 2014
MAPLE
with(combinat):
a:=n->add(mul(k, k=j), j=choose([seq((2*i-1)^2, i=1..n)], n-1))*(-1)^(n-1)/(2^(2*n-3)*(2*n)!):
seq(numer(a(n)), n=1..20); # Ruperto Corso, Dec 15 2011
CROSSREFS
Sequence in context: A201606 A139000 A061959 * A003383 A195575 A195553
KEYWORD
sign,frac
EXTENSIONS
Corrected and extended by Ruperto Corso, Dec 15 2011
STATUS
approved