login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139000 a(n) = discriminant of n-th Bell's polynomial. 0
1, -1, -5, 257, 227081, -5180893281, -4280906663314189, 171185545597850136406017, 426885502327596067385688208587793, -83152665259106642682190066734067859360190625 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012.

LINKS

Table of n, a(n) for n=1..10.

Weisstein, Eric W., Bell Polynomial.

EXAMPLE

a(4) = 257 because discriminant of the 4th Bell polynomial x + 7 x^2 + 6 x^3 + x^4 = 257.

MATHEMATICA

a = {}; Do[k = BellB[n, x]; AppendTo[a, Resultant[k, D[k, x], x]], {n, 1, 10}]; a

CROSSREFS

Sequence in context: A055386 A216849 A201606 * A061959 A002554 A003383

Adjacent sequences:  A138997 A138998 A138999 * A139001 A139002 A139003

KEYWORD

sign

AUTHOR

Artur Jasinski, Apr 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 08:18 EST 2020. Contains 331278 sequences. (Running on oeis4.)