login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002555
Denominators of coefficients for numerical differentiation.
(Formerly M5177 N2249)
3
1, 24, 5760, 322560, 51609600, 13624934400, 19837904486400, 2116043145216, 20720294477955072, 15747423803245854720, 131978409017679544320, 72852081777759108464640, 151532330097738945606451200, 2828603495157793651320422400, 19687080326298243813190139904000
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 23.
FORMULA
a(n) is the denominator of (-1)^(n-1)*Cn-1{1^2..(2n-1)^2}/((2n)!*2^(2n-3)), where Cn{1^2..(2n+1)^2} is equal to 1 when n=0, otherwise, it is the sum of the products of all possible combinations, of size n, of the numbers (2k+1)^2 with k=0,1,..,n. - Ruperto Corso, Dec 15 2011
a(n) = denominator(A001824(n-1)*(-1)^(n-1)/(2^(2*n-3)*(2*n)!)). - Sean A. Irvine, Mar 29 2014
MAPLE
with(combinat): a:=n->add(mul(k, k=j), j=choose([seq((2*i-1)^2, i=1..n)], n-1))*(-1)^(n-1)/(2^(2*n-3)*(2*n)!): seq(denom(a(n)), n=1..20); # Ruperto Corso, Dec 15 2011
CROSSREFS
Sequence in context: A100089 A151598 A003787 * A239898 A002198 A277001
KEYWORD
nonn,frac
EXTENSIONS
More terms from Ruperto Corso, Dec 15 2011
STATUS
approved