|
|
A002222
|
|
a(n) is the number of partitions of 5n that can be obtained by adding together five (not necessarily distinct) partitions of n.
(Formerly M4147 N1722)
|
|
5
|
|
|
1, 6, 21, 91, 266, 994, 2562, 7764, 19482, 51212, 116028, 288541, 612463, 1375609, 2862437, 6036606, 11846488, 24080685, 45506290
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=1..19.
N. Metropolis and P. R. Stein, An elementary solution to a problem in restricted partitions, J. Combin. Theory, 9 (1970), 365-376.
|
|
CROSSREFS
|
See A002219 for further details. Cf. A000041, A002220, A002221, A213074.
A column of A213086.
Sequence in context: A137966 A304187 A005498 * A290355 A006359 A001553
Adjacent sequences: A002219 A002220 A002221 * A002223 A002224 A002225
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Jun 03 2012
a(12)-a(13) from Alois P. Heinz, Jul 10 2012
a(14)-a(19) from Sean A. Irvine, Sep 06 2013
|
|
STATUS
|
approved
|
|
|
|