login
a(n) is the number of partitions of 5n that can be obtained by adding together five (not necessarily distinct) partitions of n.
(Formerly M4147 N1722)
6

%I M4147 N1722 #26 May 24 2016 05:29:24

%S 1,6,21,91,266,994,2562,7764,19482,51212,116028,288541,612463,1375609,

%T 2862437,6036606,11846488,24080685,45506290

%N a(n) is the number of partitions of 5n that can be obtained by adding together five (not necessarily distinct) partitions of n.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. Metropolis and P. R. Stein, <a href="http://dx.doi.org/10.1016/S0021-9800(70)80091-6">An elementary solution to a problem in restricted partitions</a>, J. Combin. Theory, 9 (1970), 365-376.

%Y See A002219 for further details. Cf. A000041, A002220, A002221, A213074.

%Y A column of A213086.

%K nonn,more

%O 1,2

%A _N. J. A. Sloane_

%E Edited by _N. J. A. Sloane_, Jun 03 2012

%E a(12)-a(13) from _Alois P. Heinz_, Jul 10 2012

%E a(14)-a(19) from _Sean A. Irvine_, Sep 06 2013