The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002219 a(n) is the number of partitions of 2n that can be obtained by adding together two (not necessarily distinct) partitions of n. (Formerly M2574 N1018) 19
 1, 3, 6, 14, 25, 53, 89, 167, 278, 480, 760, 1273, 1948, 3089, 4682, 7177, 10565, 15869, 22911, 33601, 47942, 68756, 96570, 136883, 189674, 264297, 362995, 499617, 678245, 924522, 1243098, 1676339, 2237625, 2988351, 3957525, 5247500, 6895946, 9070144, 11850304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140 (terms 1..89 from Alois P. Heinz) N. Metropolis and P. R. Stein, An elementary solution to a problem in restricted partitions, J. Combin. Theory, 9 (1970), 365-376. Vladimir A. Shlyk, Number of Vertices of the Polytope of Integer Partitions and Factorization of the Partitioned Number, arXiv:1805.07989 [math.CO], 2018. FORMULA See A213074 for Metropolis and Stein's formulas. a(n) = A000041(2*n) - A006827(n) = A000041(2*n) - A046663(2*n,n). a(n) = A276107(2*n). - Max Alekseyev, Oct 17 2022 EXAMPLE Here are the seven partitions of 5: 1^5, 1^3 2, 1 2^2, 1^2 3, 2 3, 1 4, 5. Adding these together in pairs we get a(5) = 25 partitions of 10: 1^10, 1^8 2, 1^6 2^2, etc. (we get all partitions of 10 into parts of size <= 5 - there are 30 such partitions - except for five of them: we do not get 2 4^2, 3^2 4, 2^3 4, 1 3^3, 2^5). N. J. A. Sloane, Jun 03 2012 From Gus Wiseman, Oct 27 2022: (Start) The a(1) = 1 through a(4) = 14 partitions: (11) (22) (33) (44) (211) (321) (422) (1111) (2211) (431) (3111) (2222) (21111) (3221) (111111) (3311) (4211) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111) (End) MAPLE g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i))) end: b:= proc(n, i, s) option remember; `if`(i=1 and s<>{} or n in s, g(n, i), `if`(i<1 or s={}, 0, b(n, i-1, s)+ `if`(i>n, 0, b(n-i, i, map(x-> {`if`(x>n-i, NULL, max(x, n-i-x)), `if`(xn, NULL, max(x-i, n-x))}[], s))))) end: a:= n-> b(2*n, n, {n}): seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2012 MATHEMATICA b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; A006827[n_] := b[2*n, 2*n, {n}]; a[n_] := PartitionsP[2*n] - A006827[n]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *) primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; subptns[s_]:=primeMS/@Divisors[Times@@Prime/@s]; Table[Length[Select[IntegerPartitions[2n], MemberQ[Total/@subptns[#], n]&]], {n, 10}] (* Gus Wiseman, Oct 27 2022 *) CROSSREFS Column m=2 of A213086. Bisection of A276107. Cf. A064914, A000041, A002220, A002221, A002222, A213074, A006827, A046663. The strict version is A237258, ranked by A357854. Ranked by A357976 = positions of nonzero terms in A357879. A122768 counts distinct submultisets of partitions. A304792 counts subset-sums of partitions, positive A276024, strict A284640. Cf. A108917, A235130, A237194, A300061. Sequence in context: A285460 A236429 A316245 * A006906 A324703 A120940 Adjacent sequences: A002216 A002217 A002218 * A002220 A002221 A002222 KEYWORD nonn,nice AUTHOR EXTENSIONS Better description from Vladeta Jovovic, Mar 06 2000 More terms from Christian G. Bower, Oct 12 2001 Edited by N. J. A. Sloane, Jun 03 2012 More terms from Alois P. Heinz, Jul 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 17:16 EST 2022. Contains 358588 sequences. (Running on oeis4.)