login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002030
Number of connected graphs on n labeled nodes, each node being colored with one of 5 colors, such that no edge joins nodes of the same color.
(Formerly M3911 N1606)
3
1, 5, 20, 300, 9980, 616260, 65814020, 11878194300, 3621432947180, 1880516646144660, 1678121372919602420, 2590609089652498130700, 6947580541943715645962780, 32448510765823652400410879460, 264301377639329321236008592510820
OFFSET
0,2
REFERENCES
R. C. Read, personal communication.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. C. Read, E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
FORMULA
E.g.f.: log(B(x)+1) where B(x) = Sum_{n>=0} b(n)x^n/n! and b(n) = Sum_{j=0..n} C(n, j)*2^(j*(n-j)+2)*A000686(j). - Sean A. Irvine, May 27 2013
a(n) = m_n(5) using the functions defined in A002032. - Sean A. Irvine, May 29 2013
MATHEMATICA
m = 15;
serconv = (CoefficientList[Sum[x^j*2^Binomial[j, 2], {j, 0, m}] + O[x]^m, x]*CoefficientList[(Sum[x^j/(j!*2^Binomial[j, 2]), {j, 0, m}] + O[x]^m)^5, x]) . x^Range[0, m-1];
CoefficientList[1 + Log[serconv] + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Sep 04 2019, after Andrew Howroyd *)
PROG
(PARI) seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^5))))} \\ Andrew Howroyd, Dec 03 2018
CROSSREFS
Column k=5 of A322279.
Cf. A002032.
Sequence in context: A203213 A203206 A032072 * A213148 A202860 A344709
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, May 27 2013
Name clarified and offset corrected by Andrew Howroyd, Dec 03 2018
STATUS
approved