login
A000686
Number of 4-colored labeled graphs on n nodes, divided by 4.
(Formerly M4449 N1884)
3
1, 7, 85, 1777, 63601, 3882817, 403308865, 71139019777, 21276992674561, 10778161937857537, 9238819435213784065, 13390649605615389843457, 32796747486424209782108161, 135669064080920007649863745537, 947468281528010179181982467702785, 11166618111585805201637975219611631617
OFFSET
1,2
COMMENTS
Sequence represents 1/4 of the number of 4-colored labeled graphs on n nodes. Indeed, on p. 413 of the Read paper, column 4 is 4, 28, 340, 7108, ... - Emeric Deutsch, May 06 2004
REFERENCES
R. C. Read, personal communication.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410—414.
FORMULA
a(n) = (1/4)*Sum_{k=0..n} binomial(n, k)*2^(k(n-k))*b(k), where b(0)=1 and b(k) = 3*A000685(k) for k > 0. - Emeric Deutsch, May 06 2004
From Peter Bala, Apr 12 2013: (Start)
a(n) = (1/4)*A223887(n).
a(n) = (1/4)*Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k))*b(k)*b(n-k), where b(n) := Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k)).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is (1/4)*(E(x)^4 - 1) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = x + 7*x^2/(2!*2) + 85*x^3/(3!*2^3) + .... (End)
MATHEMATICA
b[n_] := Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; a[n_] := 1/4*Sum[ Binomial[n, k]*2^(k*(n-k))*b[k], {k, 0, n}]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
PROG
(PARI)
N=66; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n, 2)) );
tgf=E^4-1; v=Vec(tgf);
v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) ) / 4
/* Joerg Arndt, Apr 10 2013 */
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com) and Emeric Deutsch, May 05 2004
STATUS
approved