login
A322279
Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.
8
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 6, 0, 0, 1, 5, 12, 42, 38, 0, 0, 1, 6, 20, 132, 618, 390, 0, 0, 1, 7, 30, 300, 3156, 15990, 6062, 0, 0, 1, 8, 42, 570, 9980, 136980, 668526, 134526, 0, 0, 1, 9, 56, 966, 24330, 616260, 10015092, 43558242, 4172198, 0, 0
OFFSET
0,8
COMMENTS
Not all colors need to be used.
LINKS
R. C. Read, E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
FORMULA
k-th column is the logarithmic transform of the k-th column of A322280.
E.g.f of k-th column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!).
EXAMPLE
Array begins:
===============================================================
n\k| 0 1 2 3 4 5 6
---+-----------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 0 2 6 12 20 30 ...
3 | 0 0 6 42 132 300 570 ...
4 | 0 0 38 618 3156 9980 24330 ...
5 | 0 0 390 15990 136980 616260 1956810 ...
6 | 0 0 6062 668526 10015092 65814020 277164210 ...
7 | 0 0 134526 43558242 1199364852 11878194300 67774951650 ...
...
PROG
(PARI)
M(n)={
my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k)))))));
matconcat([1, W]);
}
my(T=M(7)); for(n=1, #T, print(T[n, ]))
CROSSREFS
Columns k=2..5 are A002027, A002028, A002029, A002030.
Sequence in context: A217593 A353434 A350529 * A350365 A331923 A342129
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 01 2018
STATUS
approved