login
A001693
Number of degree-n irreducible polynomials over GF(7); dimensions of free Lie algebras.
(Formerly M4373 N1838)
5
1, 7, 21, 112, 588, 3360, 19544, 117648, 720300, 4483696, 28245840, 179756976, 1153430600, 7453000800, 48444446376, 316504099520, 2077057800300, 13684147881600, 90467419857752, 599941851861744
OFFSET
0,2
COMMENTS
Number of aperiodic necklaces with n beads of 7 colors. - Herbert Kociemba, Nov 25 2016
REFERENCES
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1186 (terms 0..200 from T. D. Noe)
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
G. J. Simmons, The number of irreducible polynomials of degree n over GF(p), Amer. Math. Monthly, 77 (1970), 743-745.
G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
FORMULA
a(n) = (1/n)*Sum_{d|n} mu(d)*7^(n/d), for n>0.
G.f.: k=7, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
MAPLE
with(numtheory); A001693 := proc(n) local d, s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*7^(n/d); od; RETURN(s/n); fi; end;
MATHEMATICA
a[n_]:=(1/n)*Sum[MoebiusMu[d]*7^(n/d), {d, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Aug 31 2011, after formula *)
mx=40; f[x_, k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i, {i, 1, mx}]; CoefficientList[Series[f[x, 7], {x, 0, mx}], x] (* Herbert Kociemba, Nov 25 2016 *)
PROG
(PARI) a(n) = if(n, sumdiv(n, d, moebius(d)*7^(n/d))/n, 1) \\ Altug Alkan, Dec 01 2015
CROSSREFS
Column 7 of A074650.
Sequence in context: A219152 A038184 A001185 * A321521 A061961 A028248
KEYWORD
nonn,easy,nice
EXTENSIONS
Description corrected by Vladeta Jovovic, Feb 09 2001
STATUS
approved