login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038184
State of one-dimensional cellular automaton 'sigma' (Rule 150): 000,001,010,011,100,101,110,111 -> 0,1,1,0,1,0,0,1 at generation n, converted to a decimal number.
15
1, 7, 21, 107, 273, 1911, 5189, 28123, 65793, 460551, 1381653, 7039851, 17829905, 124809335, 340873541, 1840690907, 4295032833, 30065229831, 90195689493, 459568513131, 1172543963409, 8207807743863, 22286925370437
OFFSET
0,2
COMMENTS
Generation n (starting from the generation 0: 1) interpreted as a binary number, but written in base 10.
Rows of the mod 2 trinomial triangle (A027907), interpreted as binary numbers: 1, 111, 10101, 1101011, ... (A118110). - Jacob A. Siehler, Aug 25 2006
See A071053 for number of ON cells. - N. J. A. Sloane, Jul 28 2014
EXAMPLE
Bit patterns with "0" replaced by "." for visibilty [Georg Fischer, Dec 16 2021]:
0: 1
1: 111
2: 1.1.1
3: 11.1.11
4: 1...1...1
5: 111.111.111
6: 1.1...1...1.1
7: 11.11.111.11.11
8: 1.......1.......1
9: 111.....111.....111
10: 1.1.1...1.1.1...1.1.1
11: 11.1.11.11.1.11.11.1.11
12: 1...1.......1.......1...1
13: 111.111.....111.....111.111
14: 1.1...1.1...1.1.1...1.1...1.1
15: 11.11.11.11.11.1.11.11.11.11.11
MAPLE
bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);
sigmagen := proc(n) option remember: if (0 = n) then (1)
else sum('((bit_n(sigmagen(n-1), i)+bit_n(sigmagen(n-1), i-1)+bit_n(sigmagen(n-1), i-2)) mod 2)*(2^i)', 'i'=0..(2*n)) fi: end:
MATHEMATICA
f[n_] := Sum[2^k*Coefficient[ #, x, k], {k, 0, 2n}] & @ Expand[(1 + x + x^2)^n, Modulus -> 2] (* Jacob A. Siehler, Aug 25 2006 *)
PROG
(PARI)
a(n) = subst(lift(Pol(Mod([1, 1, 1], 2), 'x)^n), 'x, 2);
vector(23, n, a(n-1)) \\ Gheorghe Coserea, Jun 12 2016
CROSSREFS
Cf. A006977, A006978, A038183, A038185 (other cellular automata).
This sequence, A071036 and A118110 are equivalent descriptions of the Rule 150 automaton.
Sequence in context: A253072 A261854 A219152 * A001185 A001693 A321521
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 1999
STATUS
approved