login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001690 Non-Fibonacci numbers.
(Formerly M3268 N1319)
33
4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A010056(a(n)) = 0. - Reinhard Zumkeller, Oct 10 2013

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Bakir Farhi, An explicit formula generating the non-Fibonacci numbers, arXiv:1105.1127 [math.NT], May 05 2011.

H. W. Gould, Non-Fibonacci numbers, Fib. Quart., 3 (1965), pp. 177-183.

FORMULA

a(n-1) = floor(n + lgg(sqrt(5)*(lgg(sqrt(5)*n)+n) - 5 + 3/n) - 2) where lgg(x) = log(x)/log((sqrt(5)+1)/2), given by Farhi. - Jonathan Vos Post, May 05 2011

a(n) ~ n. - Charles R Greathouse IV, Nov 06 2014

a(n) = floor(1/2 - LambertW(-1, -log(phi)/(sqrt(5)*phi^(n - 3/2)))/log(phi)) with phi = (1 + sqrt(5))/2 [Nicolas Normand (Nantes)]. - Simon Plouffe, Nov 29 2017 [abs removed by Peter Luschny, Nov 30 2017]

MAPLE

a:=proc(n) floor(-LambertW(-1, -1/5*ln(1/2+1/2*5^(1/2))*5^(1/2) /((1/2+1/2*5^(1/2))^(n-3/2))) /ln(1/2+1/2*5^(1/2))+1/2) end:

seq(a(n), n=1..69); # Simon Plouffe, Nov 29 2017

# alternative

isA000045 := proc(n)

    for k from 0 do

        if A000045(k) = n then

            return true;

        elif A000045(k) > n then

            return false;

        end if;

    end do:

end proc:

A001690 := proc(n)

    option remember;

    if n = 1 then

        4 ;

    else

        for a from procname(n-1)+1 do

            if not isA000045(a) then

                return a;

            end if;

        end do:

    end if;

end proc:

seq(A001690(n), n=1..100) ; # R. J. Mathar, Feb 01 2019

# third Maple program:

q:= n-> (t-> issqr(t+4) or issqr(t-4))(5*n^2):

remove(q, [$1..100])[]; # Alois P. Heinz, Jun 05 2019

MATHEMATICA

Complement[Range[Fibonacci[a = 12]], Fibonacci[Range[a]]] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)

a[n_] := With[{phi = (1 + Sqrt[5])/2}, Floor[1/2 - LambertW[-1, -Log[phi]/(Sqrt[5] phi^(n - 3/2))]/Log[phi]]];

Table [a[n], {n, 1, 70}] (* Peter Luschny, Nov 30 2017 *)

Table[Floor[n +Log[GoldenRatio, Sqrt[5]*(Log[GoldenRatio, Sqrt[5]*n] +n) -5 +3/n] -2], {n, 2, 100}] (* G. C. Greubel, May 26 2019 *)

PROG

(PARI) lgg(x)=log(x)/log((sqrt(5)+1)/2);

a(n)=n++; floor(n+lgg(sqrt(5)*(lgg(sqrt(5)*n)+n)-5+3/n)-2);

vector(66, n, a(n)) /* Joerg Arndt, May 14 2011 */

(PARI) lower=3; upper=5; for(i=4, 20, for(n=lower+1, upper-1, print1(n", ")); [lower, upper]=[upper, lower+upper]) \\ Charles R Greathouse IV, Nov 19 2013

(Haskell)

a001690 n = a001690_list !! (n-1)

a001690_list = filter ((== 0) . a010056) [0..]

-- Reinhard Zumkeller, Oct 10 2013

(Python)

def f(n):

    a=1

    b=2

    c=3

    while n>0:

        a=b

        b=c

        c=a+b

        n-=(c-b-1)

    n+=(c-b-1)

    return (b+n)

for i in range(1, 1001):

    print(str(i)+" "+str(f(i))) \\ Indranil Ghosh, Dec 22 2016

(MAGMA) phi:= (1+Sqrt(5))/2; [Floor(n + Log(phi, Sqrt(5)*(Log(phi, Sqrt(5)*n) + n) - 5 + 3/n) - 2 ): n in [2..100]]; // G. C. Greubel, May 26 2019

(Sage) [floor( n + log( sqrt(5)*(log(sqrt(5)*n, golden_ratio) + n) - 5 + 3/n , golden_ratio) - 2 ) for n in (2..100)] # G. C. Greubel, May 26 2019

CROSSREFS

The nonnegative integers that are not in A000045.

Cf. A010056.

Sequence in context: A213627 A225871 A288383 * A105447 A242286 A144222

Adjacent sequences:  A001687 A001688 A001689 * A001691 A001692 A001693

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 17:54 EST 2020. Contains 338625 sequences. (Running on oeis4.)