login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001649
A Fielder sequence.
(Formerly M2649 N1056)
5
1, 3, 7, 15, 26, 57, 106, 207, 403, 788, 1530, 2985, 5812, 11322, 22052, 42959, 83675, 162993, 317491, 618440, 1204651, 2346534, 4570791, 8903409, 17342876, 33782050, 65803777, 128178646, 249678140, 486346022, 947349461, 1845334319, 3594511719, 7001720167
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: x*(1+2*x+3*x^2+4*x^3+6*x^5)/(1-x-x^2-x^3-x^4-x^6).
MAPLE
A001649:=-(1+2*z+3*z**2+4*z**3+6*z**5)/(z+1)/(z**5-z**4+2*z**3-z**2+2*z-1); # [Conjectured by Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
LinearRecurrence[{1, 1, 1, 1, 0, 1}, {1, 3, 7, 15, 26, 57}, 50] (* T. D. Noe, Aug 09 2012 *)
CoefficientList[Series[x*(1+2*x+3*x^2+4*x^3+6*x^5)/(1-x-x^2-x^3-x^4-x^6), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+3*x^2+4*x^3+6*x^5)/(1-x-x^2-x^3-x^4-x^6)+x*O(x^n), n))
(Magma) I:=[1, 3, 7, 15, 26, 57]; [n le 6 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4) + Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 19 2017
CROSSREFS
Sequence in context: A131076 A001648 A051054 * A303220 A301894 A213215
KEYWORD
nonn
STATUS
approved