The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001650 k appears k times (k odd). 18
 1, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For n >= 0, a(n+1) is the number of integers x with |x| <= sqrt(n), or equivalently the number of points in the Z^1 lattice of norm <= n+1. - David W. Wilson, Oct 22 2006 The burning number of a connected graph of order n is at most a(n). See Bessy et al. - Michel Marcus, Jun 18 2018 REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106. LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Stéphane Bessy, Anthony Bonato, Jeannette Janssen and Dieter Rautenbach, Bounds on the Burning Number, arXiv:1511.06023 [math.CO], 2015-2016. Abraham Isgur, Vitaly Kuznetsov, and Stephen Tanny, A combinatorial approach for solving certain nested recursions with non-slow solutions, arXiv preprint arXiv:1202.0276 [math.CO], 2012. FORMULA a(n) = 1 + 2*floor(sqrt(n-1)), n > 0. - Antonio Esposito, Jan 21 2002 From Michael Somos, Apr 29 2003: (Start) G.f.: theta_3(x)*x/(1-x). a(n+1) = a(n) + A000122(n). (End) a(1) = 1, a(2) = 3, a(3) = 3, a(n) = a(n-a(n-2))+2. - Branko Curgus, May 07 2010 a(n) = 2*ceiling(sqrt(n)) - 1. - Branko Curgus, May 07 2010 Seen as a triangle read by rows: T(n,k) = 2*(n-1), k=1..n. - Reinhard Zumkeller, Nov 14 2015 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022 MATHEMATICA a=1, a=3, a=3, a[n_]:=a[n]=a[n-a[n-2]]+2 (* Branko Curgus, May 07 2010 *) Flatten[Table[Table[n, {n}], {n, 1, 17, 2}]] (* Harvey P. Dale, Mar 31 2013 *) PROG (PARI) a(n)=if(n<1, 0, 1+2*sqrtint(n-1)) (Haskell) a001650 n k = a001650_tabf !! (n-1) !! (k-1) a001650_row n = a001650_tabf !! (n-1) a001650_tabf = iterate (\xs@(x:_) -> map (+ 2) (x:x:xs))  a001650_list = concat a001650_tabf -- Reinhard Zumkeller, Nov 14 2015 CROSSREFS Partial sums of A000122. Cf. A001670, A003881, A111650, A131507, A193832. Sequence in context: A136800 A126661 A162226 * A130175 A200266 A101290 Adjacent sequences: A001647 A001648 A001649 * A001651 A001652 A001653 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Michael Somos, Apr 29 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 8 23:03 EST 2023. Contains 360153 sequences. (Running on oeis4.)