The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001601 a(n) = 2*a(n-1)^2 - 1, if n>1. a(0)=1, a(1)=3. (Formerly M3042 N1234) 22
 1, 3, 17, 577, 665857, 886731088897, 1572584048032918633353217, 4946041176255201878775086487573351061418968498177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Reduced numerators of Newton's iteration for sqrt(2). - Eric W. Weisstein An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004 Evaluation of the 2^n - 1 degree interpolating polynomial of 1/x at Chebyshev nodes in the interval (1,2): v = 1.0; for(i = 1, n, v *= 4*(a(i) - x*v)); v *= 2/a(n+1). - Jose Hortal, Apr 07 2012 Smallest positive integer x satisfying the Pell equation x^2 - 2^(2*n+1) * y^2 = 1, for n>0. - A.H.M. Smeets, Sep 29 2017 REFERENCES L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 376. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Dennis Martin, Table of n, a(n) for n = 0..11 Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., 65 (1989), 213-220. Jeffrey Shallit, Rational numbers with non-terminating, non-periodic modified Engel-type expansions, Fib. Quart., 31 (1993), 37-40. Eric Weisstein's World of Mathematics, Newtons Iteration. Eric Weisstein's World of Mathematics, Square Root. Eric Weisstein's World of Mathematics, Pythagoras's Constant H. S. Wilf, D. C. B. Marsh and J. V. Whittaker, Problem E1093, Amer. Math. Monthly, 61 (1954), 424-425. FORMULA From Mario Catalani (mario.catalani(AT)unito.it), May 27 2003, May 30 2003: (Start) a(n) = a(n-1)^2 + 2*A051009(n)^2 for n>0. a(n)^2 = 2*A051009(n+1)^2 + 1. a(n) = Sum_{r=0..2^(n-1)} binomial(2^n, 2*r)*2^r. (End) Expansion of 1/sqrt(2) as an infinite product: 1/sqrt(2) = Prod_{k>=1} 1-1/(a(n)+1). a(1)=3; a(n) = floor(1/(1-1/(sqrt(2)*Prod_{k=1..n-1} 1-1/(a(k)+1)))). - Thomas Baruchel, Nov 06 2003 2*a(n+1) = A003423(n). a(n) = (1/2)*((1 + sqrt(2))^(2^n) + (1 - sqrt(2))^(2^n)). - Artur Jasinski, Oct 10 2008 For n>1: a(n)-1 = 4^n * Prod_{i=1..n-2} a(i)^2. - Jose Hortal, Apr 13 2012 From Peter Bala, Nov 11 2012: (Start) 4*sqrt(2)/7 = Product_{n>=1} (1 - 1/(2*a(n))). sqrt(2) = Product_{n>=1} (1 + 1/a(n)). a(n) = 1/2*A003423(n-1). (End) a(n) = cos(2^(n-1) * arccos(3)) = cosh(2^(n-1) * log(3 + 2*sqrt(2))) for n>=1. - Daniel Suteu, Jul 28 2016 a(n+1) = T(2^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Feb 01 2017 a(n) = A001541(2^(n-1)). - A.H.M. Smeets, May 28 2017 MATHEMATICA Table[Simplify[Expand[(1/2) ((1 + Sqrt[2])^(2^n) + (1 - Sqrt[2])^(2^n))]], {n, 0, 7}]  (* Artur Jasinski, Oct 10 2008 *) Join[{1}, NestList[2#^2-1&, 3, 7]]  (* Harvey P. Dale, Mar 24 2011 *) PROG (PARI) a(n)=if(n<1, n==0, 2*a(n-1)^2-1) CROSSREFS Cf. A051009, A003423. a(n) = A001333(2^n). Sequence in context: A305375 A128300 A292082 * A061119 A094133 A049985 Adjacent sequences:  A001598 A001599 A001600 * A001602 A001603 A001604 KEYWORD nonn,easy,nice,frac AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 07:26 EDT 2021. Contains 343163 sequences. (Running on oeis4.)