login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001411 Number of n-step self-avoiding walks on square lattice.
(Formerly M3448 N1402)
26
1, 4, 12, 36, 100, 284, 780, 2172, 5916, 16268, 44100, 120292, 324932, 881500, 2374444, 6416596, 17245332, 46466676, 124658732, 335116620, 897697164, 2408806028, 6444560484, 17266613812, 46146397316, 123481354908, 329712786220, 881317491628 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

B. Bollobas and O. Riordan, Percolation, Cambridge, 2006, see p. 15.

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 461.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..71 (from the Jensen link below)

H. Bottomley, Illustration of initial terms

A. R. Conway et al., Algebraic techniques for enumerating self-avoiding walks on the square lattice, J. Phys A 26 (1993) 1519-1534.

A. R. Conway et al., Algebraic techniques for enumerating self-avoiding walks on the square lattice, arXiv:hep-lat/9211062, 1992.

S. R. Finch, Self-Avoiding-Walk Connective Constants

M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.

A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.

A. J. Guttmann and A. R. Conway, Self-Avoiding Walks and Polygons, Annals of Combinatorics 5 (2001) 319-345.

B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.

I. Jensen, Series Expansions for Self-Avoiding Walks

D. Randall, Counting in Lattices: Combinatorial Problems from Statistical Mechanics, PhD Thesis.

G. Slade, Self-avoiding walks, Math. Intelligencer, 16 (No. 1, 1994), 29-35.

M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.

M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.

MATHEMATICA

mo=Tuples[{-1, 1}, 2]; a[0]=1; a[tg_, p_:{{0, 0}}] := Block[{e, mv = Complement[Last[p]+# & /@ mo, p]}, If[tg == 1, Length@mv, Sum[a[tg-1, Append[p, e]], {e, mv}]]]; a /@ Range[0, 10] (* Giovanni Resta, May 06 2016 *)

CROSSREFS

Twice A002900.

Sequence in context: A192626 A002906 A191756 * A095350 A084776 A162921

Adjacent sequences:  A001408 A001409 A001410 * A001412 A001413 A001414

KEYWORD

nonn,walk,nice

AUTHOR

N. J. A. Sloane, A. J. Guttmann (tonyg(AT)maths.mu.OZ.AU)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 11:25 EDT 2017. Contains 288788 sequences.