login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001412 Number of n-step self-avoiding walks on cubic lattice.
(Formerly M4202 N1754)
16
1, 6, 30, 150, 726, 3534, 16926, 81390, 387966, 1853886, 8809878, 41934150, 198842742, 943974510, 4468911678, 21175146054, 100121875974, 473730252102, 2237723684094, 10576033219614, 49917327838734, 235710090502158, 1111781983442406, 5245988215191414, 24730180885580790, 116618841700433358, 549493796867100942, 2589874864863200574, 12198184788179866902, 57466913094951837030, 270569905525454674614 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

R. D. Schram, G. T. Barkema, R. H. Bisseling, Table of n, a(n) for n = 0..36

N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A5 for n<=30.

S. R. Finch, Self-Avoiding-Walk Connective Constants

M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.

A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.

B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.

D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.

A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.

D. Randall, Counting in Lattices: Combinatorial Problems from Statistical Mechanics, PhD Thesis.

Raoul D. Schram, Gerard T. Barkema, Rob H. Bisseling, Exact enumeration of self-avoiding walks, arXiv:1104.2184 [math-ph], 2011. [Jonathan Vos Post, Apr 13 2011]

M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.

M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.

M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.

CROSSREFS

Cf. A002902, A078717, A001411, A001413.

Sequence in context: A002913 A157519 A075886 * A162937 A006818 A006819

Adjacent sequences:  A001409 A001410 A001411 * A001413 A001414 A001415

KEYWORD

nonn,walk,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 09:25 EST 2018. Contains 317446 sequences. (Running on oeis4.)