

A001413


Number of 2nstep polygons on cubic lattice.
(Formerly M5154 N2238)


4



0, 24, 264, 3312, 48240, 762096, 12673920, 218904768, 3891176352, 70742410800, 1309643747808, 24609869536800
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) is the number of 2nstep closed selfavoiding paths on the cubic lattice.  Bert Dobbelaere, Jan 04 2019


REFERENCES

B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..12.
M. E. Fisher and M. F. Sykes, Excludedvolume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 4558.
B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted randomwalk model of a macromolecule, J. Chem. Phys., 34 (1961), 15311537.
M. F. Sykes et al., The number of selfavoiding walks on a lattice, J. Phys. A 5 (1972), 661666.


CROSSREFS

Cf. A010566 (for square lattice equivalent).
Cf. A002896 (without selfavoidance restriction).
Sequence in context: A000145 A286346 A126904 * A022065 A125412 A270846
Adjacent sequences: A001410 A001411 A001412 * A001414 A001415 A001416


KEYWORD

nonn,walk


AUTHOR

N. J. A. Sloane


EXTENSIONS

a(11)a(12) from Bert Dobbelaere, Jan 04 2019


STATUS

approved



