OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Matthew House, Table of n, a(n) for n = 0..194
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
FORMULA
a(n) = A000364(n)*16^n. - Philippe Deléham, Oct 27 2006
a(n) = (2*n)!*[x^(2*n)](sec(4*x)). - Peter Luschny, Nov 21 2021
MAPLE
egf := sec(4*x): ser := series(egf, x, 26):
seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
MATHEMATICA
a0 = 4; nmax = 20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2*k+1]/(2*k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2*n +1)*Pi^(-(2*n)-1)*(2*n)!*a^(2*n+1/2)*L[a, 2*n+1, km] // Round; cc[km_] := cc[km] = Table[c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000490 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)
Range[0, 26, 2]! CoefficientList[Series[Sec[4 x], {x, 0, 26}], x^2] (* Matthew House, Oct 05 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000
STATUS
approved