login
A000490
Generalized Euler numbers c(4,n).
(Formerly M5027 N2169)
6
1, 16, 1280, 249856, 90767360, 52975108096, 45344872202240, 53515555843342336, 83285910482761809920, 165262072909347030040576, 407227428060372417275494400, 1219998300294918683087199010816, 4366953142363907901751614431559680, 18406538229888710811704852978971181056
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
FORMULA
a(n) = A000364(n)*16^n. - Philippe Deléham, Oct 27 2006
a(n) = (2*n)!*[x^(2*n)](sec(4*x)). - Peter Luschny, Nov 21 2021
MAPLE
egf := sec(4*x): ser := series(egf, x, 26):
seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
MATHEMATICA
a0 = 4; nmax = 20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2*k+1]/(2*k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2*n +1)*Pi^(-(2*n)-1)*(2*n)!*a^(2*n+1/2)*L[a, 2*n+1, km] // Round; cc[km_] := cc[km] = Table[c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000490 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)
Range[0, 26, 2]! CoefficientList[Series[Sec[4 x], {x, 0, 26}], x^2] (* Matthew House, Oct 05 2024 *)
CROSSREFS
Row 4 of A235605.
Sequence in context: A113104 A227602 A186856 * A308587 A363921 A027648
KEYWORD
nonn,easy
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000
STATUS
approved