login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000488 Generalized tangent numbers d_(n,3).
(Formerly M5024 N2167)
4
16, 361, 3362, 16384, 55744, 152166, 355688, 739328, 1415232, 2529614, 4261454, 6885376, 10708160, 16054580, 23494584, 33554432, 46698624, 64037790, 86342918, 114163712, 149518720, 193356526, 246232840, 311635968, 390600000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Lars Blomberg, Table of n, a(n) for n = 1..1000

D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 663-688.

D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699

MATHEMATICA

amax = 25; km0 = 10; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; d[1, n_, km_] := 2 (2 n - 1)! L[-1, 2 n, km] (2/Pi)^(2 n) // Round; d[a_ /; a > 1, n_, km_] := (2 n - 1)! L[-a, 2 n, km] (2 a/Pi )^(2 n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[a, 3, km], {a, 1, amax}]; dd[km0]; dd[km = 2 km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000488 = dd[km] (* Jean-Fran├žois Alcover, Feb 08 2016 *)

CROSSREFS

Cf. A000061, A000176, A000518.

Sequence in context: A155122 A094101 A034673 * A025759 A276257 A276097

Adjacent sequences:  A000485 A000486 A000487 * A000489 A000490 A000491

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 03 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 19 23:35 EDT 2017. Contains 290821 sequences.