login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000327 Number of partitions into non-integral powers.
(Formerly M3819 N1563)
3
1, 5, 12, 23, 39, 62, 91, 127, 171, 228, 294, 370, 461, 561, 677, 811, 955, 1121, 1303, 1499, 1719, 1960, 2218, 2499, 2806, 3131, 3485, 3868, 4274, 4706, 5166, 5658, 6175, 6725, 7309, 7923, 8572, 9256, 9972, 10728, 11521, 12349, 13218, 14126, 15072 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

a(n) counts the solutions to the inequality x_1^(2/3) + x_2^(2/3) <= n for any two distinct integers 1 <= x_1 < x_2. - R. J. Mathar, Jul 03 2009

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seth A. Troisi, Table of n, a(n) for n = 3..1000

B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.

B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]

FORMULA

a(n) = A000148(n) - floor((n/2)^(3/2)). - Seth A. Troisi, May 25 2022

MAPLE

A000327 := proc(n) local a, x1, x2 ; a := 0 ; for x1 from 1 to floor(n^(3/2)) do x2 := (n-x1^(2/3))^(3/2) ; if floor(x2) >= x1+1 then a := a+floor(x2-x1) ; fi; od: a ; end: seq(A000327(n), n=3..80) ; # R. J. Mathar, Sep 29 2009

MATHEMATICA

A000327[n_] := Module[{a, x1, x2 }, a = 0; For[x1 = 1, x1 <= Floor[ n^(3/2)], x1++, x2 = (n - x1^(2/3))^(3/2); If[Floor[x2] >= x1+1, a = a + Floor[x2 - x1]]]; a ]; Table[A000327[n], {n, 3, 80}] (* Jean-François Alcover, Feb 07 2016, after R. J. Mathar *)

A000327[n_] := Sum[Min[x1 - 1, Floor[(n - x1^(2/3))^(3/2)]], {x1, 2, Floor[n^(3/2)]}];

Table[A000327[n], {n, 3, 80}] (* Seth A. Troisi, May 25 2022 *)

CROSSREFS

Cf. A000148, A000158, A000160.

Sequence in context: A332569 A126573 A341209 * A220425 A130624 A344846

Adjacent sequences: A000324 A000325 A000326 * A000328 A000329 A000330

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from R. J. Mathar, Sep 29 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 18:02 EST 2022. Contains 358588 sequences. (Running on oeis4.)