This article needs more work.
Please help by expanding it!
Set compositions are compositions of sets.
Number of set compositions over set Np
Denote by
![{\displaystyle N_{p}=\{1,2,\ldots ,p\}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/912f2f81036882826dce59a7b7064e277d0daa49)
the set of all positive integers no greater than
, and by
![{\displaystyle {\overline {c}}_{m}(k,N_{p})\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/ed690bbd6fa78b3619514cc24dba218ee2dd545b)
the number of set compositions of a
-set (
elements set) in
parts of size
.
Recurrence and initial conditions
![{\displaystyle {\overline {c}}_{0}(0,N_{p})=1{\text{ and }}{\overline {c}}_{0}(k,N_{p})=0{\text{ if }}k>0;\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/189ee56f6d466a40c860f7d1be9f3270026e386e)
![{\displaystyle {\overline {c}}_{m}(k,N_{p})=0{\text{ if }}k<m{\text{ or }}k>mp;}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/160ec5388e25db1daa316c339cb8c6370262bbef)
![{\displaystyle {\overline {c}}_{m}(k,N_{p})=\sum _{s=1}^{p}{\binom {k}{s}}~{\overline {c}}_{m-1}(k-s,N_{p}).\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/0c3b74158718546d84b30b5853c6db19a7d05099)
Generating function
![{\displaystyle \sum _{k=0}^{\infty }{\overline {c}}_{m}(k,N_{p})~{\frac {x^{k}}{k!}}=\sum _{k=m}^{pm}{\overline {c}}_{m}(k,N_{p})~{\frac {x^{k}}{k!}}=\left(x+{\frac {x^{2}}{2!}}+\ldots +{\frac {x^{p}}{p!}}\right)^{m}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/429e5830fe783abe95dfb0a44a2d4a6c59ad8fc6)
Associated sequences
![{\displaystyle {\overline {c}}(k,N_{p})=\sum _{m=0}^{\infty }{\overline {c}}_{m}(k,N_{p})=\sum _{m=\lfloor k/p\rfloor }^{k}{\overline {c}}_{m}(k,N_{p})\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/3da08171578845b97fff760b91b62be80cbb62c4)
![{\displaystyle {\overline {c}}_{m}(N_{p})=\sum _{k=0}^{\infty }{\overline {c}}_{m}(k,N_{p})=\sum _{k=m}^{pm}{\overline {c}}_{m}(k,N_{p})\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/0aada95a5287ca17c8dd4800278b63a62dd53883)
Number of set compositions over set N2
Table
From general case for
we get
![{\displaystyle {\overline {c}}_{0}(0,N_{2})=1{\text{ and }}{\overline {c}}_{0}(k,N_{2})=0{\text{ if }}k>0;\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/92314e0454de27817581bcbf1439827160a09ad0)
![{\displaystyle {\overline {c}}_{m}(k,N_{2})=0{\text{ if }}k<m{\text{ or }}k>2m;\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/4a545fdd6b6c0ea936f88d3a35ccceba42b14106)
![{\displaystyle {\overline {c}}_{m}(k,N_{2})=\sum _{s=1}^{2}{\binom {k}{s}}~{\overline {c}}_{m-1}(k-s,N_{2})=k~{\overline {c}}_{m-1}(k-1,N_{2})~+~{\frac {1}{2}}~k(k-1)~{\overline {c}}_{m-1}(k-2,N_{2}).\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/7e5f2683ce67b3f40fb50af6ac0816fee269295a)
Based upon recurrence and initial conditions we can establish the table row after row
m\k |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.. |
![{\displaystyle \scriptstyle {\overline {c}}_{m}(N_{2})}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/7d2dbc9ff3670d7892e5a7d614cef9847b66b2f0) |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
. |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
. |
2 |
2 |
0 |
0 |
2 |
6 |
6 |
0 |
0 |
0 |
0 |
0 |
0 |
. |
14 |
3 |
0 |
0 |
0 |
6 |
36 |
90 |
90 |
0 |
0 |
0 |
0 |
. |
222 |
4 |
0 |
0 |
0 |
0 |
24 |
240 |
1080 |
2520 |
2520 |
0 |
0 |
. |
6384 |
5 |
0 |
0 |
0 |
0 |
0 |
120 |
1800 |
12600 |
50400 |
113400 |
113400 |
. |
291720 |
.. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
![{\displaystyle \scriptstyle {\overline {c}}(k,N_{2})}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/bac9fb3b110768d1f04e88ea2025c43786728663) |
1 |
1 |
3 |
12 |
66 |
450 |
3690 |
35280 |
385560 |
4740120 |
64751400 |
. |
. |
|
Explicit formula
Lets now prove the equation
![{\displaystyle {\overline {c}}_{m}(k,N_{2})={\binom {m}{k-m}}~{\frac {k!}{2^{k-m}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/7b56cf7bc0fb5576c260c616b2536fa0c8168c60)
From the generating function for
and using the binomial theorem we have
![{\displaystyle \sum _{k=m}^{2m}{\overline {c}}_{m}(k,N_{2})~{\frac {x^{k}}{k!}}=\left(x+{\frac {x^{2}}{2}}\right)^{m}=\sum _{i=0}^{m}{\binom {m}{i}}~x^{m-i}~{\frac {x^{2i}}{2^{i}}}=\sum _{i=0}^{m}{\binom {m}{i}}~{\frac {x^{m+i}}{2^{i}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/cf88c63459cdacfa43790d1c85379560ab870221)
for
because
follow that
and replace
we get
![{\displaystyle \sum _{i=0}^{m}{\binom {m}{i}}~{\frac {x^{m+i}}{2^{i}}}=\sum _{k=m}^{2m}{\binom {m}{k-m}}~{\frac {x^{k}}{2^{k-m}}}=\sum _{k=m}^{2m}{\binom {m}{k-m}}~{\frac {k!}{2^{k-m}}}~{\frac {x^{k}}{k!}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/55f385405e7b2c1ddba9ca9818b4f70084d4989b)
from above finally we conclude that
![{\displaystyle \sum _{k=m}^{2m}{\overline {c}}_{m}(k,N_{2})~{\frac {x^{k}}{k!}}=\sum _{k=m}^{2m}{\binom {m}{k-m}}~{\frac {k!}{2^{k-m}}}~{\frac {x^{k}}{k!}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/36ae87063d663c7e8277f2551ed7d940ae706a44)
after equalizing the coefficients next same power of
we get above formula
However, since
we get
![{\displaystyle {\overline {c}}_{m}(k,N_{2})={\binom {m}{k-m}}~{\frac {k!}{2^{k-m}}}={\frac {m!}{(m-k)!(k-2m)!}}{\frac {k!}{2^{k-m}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/187093967ffe324d87e24dbc09fea6b9f3d07e3e)
Associated sequences
First sequence
![{\displaystyle {\overline {c}}_{m}(N_{2})=\sum _{k=m}^{2m}{\frac {m!~k!}{(2m-k)!~(k-m)!~2^{k-m}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/bfccbee437c8a0b337c2941bd1447652f07d81b4)
giving the sequence (Cf. A080599
)
- {1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, ...}
where this number can be better explained as number of placing of
distinct objects(balls) in
distinct boxes(bins) with condition that in each box can be placed at least 1 object but no more than 2 objects.
Second sequence
Denote by
the number of all compositions of a k-set in parts (subsets) of size 1 or 2. This number is sum of all numbers thats are placed in k-th column of above table. From table we can read that
![{\displaystyle {\overline {c}}(0,N_{2})=1\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/a0aef8a8110519116b2da8a71328494a1643b567)
![{\displaystyle {\overline {c}}(1,N_{2})=1\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/407352732eb1c62687ea1135e109bf2d52035595)
![{\displaystyle {\overline {c}}(2,N_{2})=3\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/4ef273e8f67f56823c66275fdcc7e7abe9a5ffb9)
![{\displaystyle {\overline {c}}(3,N_{2})=12\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/b618b430815f6b97ec3f0da5729a01fcfecb3f41)
![{\displaystyle {\overline {c}}(4,N_{2})=66\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/8bbe9c1d7fb53c57df480d525befb418735dcfba)
![{\displaystyle {\overline {c}}(5,N_{2})=450\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/80f24a159872b2f2ae4e6be65eaa580bcd428377)
For example: all compositions of a 3-set {a,b,c} are
({a},{b,c}),({b,c},{a}),({b},{a,c}),({a,c},{b}),({c},{a,b}),({a,b},{c})
({a},{b},{c}),({a},{c},{b}),({b},{a},{c}),({b},{c},{a}),({c},{a},{b}),({c},{b},{a})
![{\displaystyle {\overline {c}}(k,N_{2})=\sum _{m=\lfloor k/2\rfloor }^{k}{\frac {m!~k!}{(2m-k)!~(k-m)!~2^{k-m}}}.\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/e15d3330c9a8206ccaec2e38202e6da5eec9a1f0)
giving the sequence (Cf. A105749
)
- {1, 2, 14, 222, 6384, 291720, 19445040, 1781750880, 214899027840, 33007837322880, 6290830003852800, 1456812592995513600, 402910665227270323200, ...}
Number of set compositions over set N3
Table
Using the initial conditions and recurrences mentioned for the general case for
we get
![{\displaystyle {\overline {c}}_{0}(0,N_{3})=1{\text{ and }}{\overline {c}}_{0}(k,N_{3})=0{\text{ if }}k>0;\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/2413788dbb3636ea223606ce7a194c30507d0891)
![{\displaystyle {\overline {c}}_{m}(k,N_{3})=0{\text{ if }}k<m{\text{ or }}k>3m;\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/6d59aae494961b9d772b2f358dad73bf73918456)
![{\displaystyle {\overline {c}}_{m}(k,N_{3})=\sum _{s=1}^{3}{\binom {k}{s}}~{\overline {c}}_{m-1}(k-s,N_{3})=k~{\overline {c}}_{m-1}(k-1,N_{3})~+~{\frac {1}{2}}~k(k-1)~{\overline {c}}_{m-1}(k-2,N_{3})~+~{\frac {1}{6}}~k(k-1)(k-2)~{\overline {c}}_{m-1}(k-3,N_{3}).\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/390568d9518c025d469da78adaa764fd9f032a81)
from this recurrence now we can construct the following table row after row
m\k |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
.. |
![{\displaystyle \scriptstyle {\overline {c}}_{m}(N_{3})}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/ff92307fed69d16ed7d44c1cf61d156eafda794b) |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
. |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
. |
3 |
2 |
0 |
0 |
2 |
6 |
14 |
20 |
20 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
. |
62 |
3 |
0 |
0 |
0 |
6 |
36 |
150 |
450 |
1050 |
1680 |
1680 |
0 |
0 |
0 |
0 |
0 |
0 |
. |
5052 |
4 |
0 |
0 |
0 |
0 |
24 |
240 |
1560 |
7560 |
29400 |
90720 |
218400 |
369600 |
369600 |
0 |
0 |
0 |
. |
10871804 |
5 |
0 |
0 |
0 |
0 |
0 |
120 |
1800 |
16800 |
117600 |
667880 |
3137400 |
12243000 |
38880800 |
96096000 |
168168000 |
168168000 |
. |
487424520 |
.. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
![{\displaystyle \scriptstyle {\overline {c}}(k,N_{3})}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/aba0381d8bbce571e95786b327568a6b9c7f4703) |
1 |
1 |
3 |
13 |
74 |
530 |
4550 |
45570 |
521640 |
6717480 |
96117000 |
1512819000 |
25975395600 |
483169486800 |
9678799930800 |
207733600074000 |
. |
. |
|
for example, suppose that the third row is done, then for the element
of the fourth row from the recurrence we have
![{\displaystyle {\overline {c}}_{4}(5,N_{3})=5~{\overline {c}}_{3}(4,N_{3})~+~10~{\overline {c}}_{3}(3,N_{3})~+~10~{\overline {c}}_{3}(2,N_{3})=5\times 36+10\times 6+10\times 0=240.\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/e0baa0b0e2210c3f1f5965cbd37e28fd6b40c6c9)
Explicit formula
From the generating function for
and using the binomial theorem we have
![{\displaystyle \sum _{k=m}^{3m}{\overline {c}}_{m}(k,N_{3})~{\frac {x^{k}}{k!}}=\left(x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{6}}\right)^{m}=\left({\frac {x}{6}}\right)^{m}\left(6+3x+x^{2}\right)^{m}=\left({\frac {x}{6}}\right)^{m}\sum _{i=0}^{m}{\binom {m}{i}}(6+3x)^{i}~x^{2m-2i}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/19d8bdbba54677cc035f871615c06b36c0a465f7)
![{\displaystyle =\left({\frac {x}{6}}\right)^{m}\sum _{i=0}^{m}{\binom {m}{i}}~(2+x)^{i}~3^{i}~x^{2m-2i}=\left({\frac {x}{6}}\right)^{m}\sum _{i=0}^{m}{\binom {m}{i}}\sum _{j=0}^{i}{\binom {i}{j}}~2^{j}~x^{i-j}~3^{i}~x^{2m-2i}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/c3c896e64b0f84b0cdb6de58ce5785bf5e417841)
![{\displaystyle =\sum _{i=0}^{m}\left(\sum _{j=0}^{i}{\binom {m}{i}}~{\binom {i}{j}}~2^{i-m-j}~3^{i-m}~x^{3m-2i+j}\right)\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/95d930969f72292de58c07ca0ac2f40ec5534b17)
for
we have
, because
and
follow that
![{\displaystyle \sum _{i=0}^{m}\left(\sum _{j=0}^{i}{\binom {m}{i}}~{\binom {i}{j}}~2^{i-m-j}~3^{i-m}~x^{3m-2i+j}\right)=\sum _{k=m}^{3m}\left(\sum _{i=0}^{m}{\binom {m}{i}}~{\binom {i}{k+2i-3m}}{\frac {k!}{2^{k+i-2m}~3^{m-i}}}\right)~{\frac {x^{k}}{k!}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/790ab96bbf004e815b743a93cd6337f3fb86f0ef)
finally we get
![{\displaystyle \sum _{k=m}^{3m}{\overline {c}}_{m}(k,N_{3})~{\frac {x^{k}}{k!}}=\sum _{k=m}^{3m}\left(\sum _{i=0}^{m}{\binom {m}{i}}~{\binom {i}{k+2i-3m}}{\frac {k!}{2^{k+i-2m}~3^{m-i}}}\right)~{\frac {x^{k}}{k!}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/3a0d98a85b99910501949c0caf4e06517d1e86ce)
from above formula after equalizing of coefficients next to
we get
![{\displaystyle {\overline {c}}_{m}(k,N_{3})=\sum _{i=0}^{m}{\binom {m}{i}}~{\binom {i}{k+2i-3m}}{\frac {k!}{2^{k+i-2m}~3^{m-i}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/444b0b4e7454617108fe15fc3cf99885fe7ad68e)
because
for
follow that only for
expression
is not equal at 0 that means
![{\displaystyle {\overline {c}}_{m}(k,N_{3})=\sum _{i=0}^{3m-k}{\binom {m}{i}}~{\binom {i}{k+2i-3m}}{\frac {k!}{2^{k+i-2m}~3^{m-i}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/88b844d0315d99a4a2941e471698a889e75e177b)
![{\displaystyle k+2i-3m\leq \,i\leq \,m\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/56538caee773258e77916ea7610e07fee6531042)
using property
![{\displaystyle {\binom {m}{k}}={\frac {m!}{k!~(m-k)!}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/e709b63183908737746b23ab9c8bba5e8d28fe30)
we can show that
![{\displaystyle {\overline {c}}_{m}(k,N_{3})=\sum _{i=0}^{3m-k}{\frac {m!~k!}{(m-i)!~(k+2i-3m)!~(3m-i-k)!~2^{k+i-2m}~3^{m-i}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/ff569b6e67202f6f43da9f217bab9a7954b85ded)
Associated sequences
First sequence
![{\displaystyle {\overline {c}}_{m}(N_{3})=\sum _{k=m}^{3m}\sum _{i=0}^{3m-k}{\frac {m!~k!}{(m-i)!~(k+2i-3m)!~(3m-i-k)!~2^{k+i-2m}~3^{m-i}}}.\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/059d1f2407104bf695685ce64259bc629846f75c)
giving the sequence (Cf. A144422
)
- {1, 3, 62, 5052, 1087104, 487424520, 393702654960, 519740602925040, 1046019551260199040, 3046052768591313895680, 12322848899623787148556800, ...}
Second sequence
Denote by
the number of all compositions of a k-set in parts (subsets) of size 1,2 or 3. This number is sum of all numbers thats are placed in k-th column of above table. From table we can read that
![{\displaystyle {\overline {c}}(0,N_{3})=1\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/14eb3f1e426a7510505116efbbe68dba558047b3)
![{\displaystyle {\overline {c}}(1,N_{3})=1\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/248cce5f465d64a4c004d3c664fbbe0d92f4fe8b)
![{\displaystyle {\overline {c}}(2,N_{3})=3\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/55a60bfd307acd5755c8ee86fc920f4ebac45df1)
![{\displaystyle {\overline {c}}(3,N_{3})=13\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/faa59910eb2d8da74d4a68946fa044abc7f2c0fe)
![{\displaystyle {\overline {c}}(4,N_{3})=74\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/2da9c8dcbd9bab8b8d4e7920868e5b8c86cd323b)
![{\displaystyle {\overline {c}}(5,N_{3})=530\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/eaa02ab5d12a3ad72c5b598e9f38f39fbcc1ca6d)
For example: all compositions of a 3-set {a,b,c} are
({a,b,c})
({a},{b,c}),({b,c},{a}),({b},{a,c}),({a,c},{b}),({c},{a,b}),({a,b},{c})
({a},{b},{c}),({a},{c},{b}),({b},{a},{c}),({b},{c},{a}),({c},{a},{b}),({c},{b},{a})
![{\displaystyle {\overline {c}}(k,N_{3})=\sum _{m=\lfloor k/3\rfloor }^{k}\sum _{i=0}^{3m-k}{\frac {m!~k!}{(m-i)!~(k+2i-3m)!~(3m-i-k)!~2^{k+i-2m}~3^{m-i}}}.\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/b17b8e8b14c5e35afd908c85ef79bd2be0b4c3ec)
, ![{\displaystyle i\leq {\frac {k-3m}{2}}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/79e12c3a1bbd43cefa77431da5e1891677dce931)
giving the sequence (Cf. A189886
)
- {, ...}
Using Mathematica and the formula above we can find for sequence
following terms
![{\displaystyle 1,1,3,13,74,\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/bbc5b83510a23eb8f291e7d8b229008e0829316b)
![{\displaystyle 530,4550,45570,521640,6717480,\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/62879b662e206abb9a4a5580e68df5ee2cd392b9)
![{\displaystyle 96117000,1512819000,25975395600,483169486800,9678799930800,\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/f149895e4081424bba6f2a306bfa738bf92d9cc9)
![{\displaystyle 207733600074000,4755768505488000,115681418156304000,2979408725813520000,80998627977002736000,\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/c8881e51676b0343e9ea82bde5990b15eafecf81)
![{\displaystyle 2317937034142810080000,69649003197501567840000,2192459412316607834400000,72152830779716793506400000,477756318984329979756160000\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/27635ac21ab454568d59b5f929b47b6538770ecd)
See also