This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189886 a(n) is the number of compositions of the set {1, 2, ..., n} into blocks, each of size 1, 2 or 3 (n >= 0). 5
 1, 1, 3, 13, 74, 530, 4550, 45570, 521640, 6717480, 96117000, 1512819000, 25975395600, 483169486800, 9678799930800, 207733600074000, 4755768505488000, 115681418156304000, 2979408725813520000, 80998627977002736000, 2317937034142810080000, 69649003197501567840000, 2192459412316607834400000, 72152830779716793506400000, 2477756318984329979756160000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Sequences of sets, each set having no more than 3 elements. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..424 Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017. David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009) Adi Dani, Compositions and partitions of sets FORMULA a(n) = sum(m=0..n, sum(j=0..3*m-n, n!/(2^(n+j-2*m) * 3^(m-j)) * C(m,j) * C(j,n+2*j-3*m))) where C(n,k) is the binomial coefficient. a(n) = n * a(n-1) + n*(n-1)/2 * a(n-2) + n*(n-1)*(n-2)/6 * a(n-3). - Istvan Mezo, Jun 06 2013 E.g.f.: 1/(1 - x - x^2/2 - x^3/6). -  Geoffrey Critzer, Dec 04 2012 EXAMPLE a(3) = 13 because all compositions of set {a,b,c} into blocks of size 1, 2, or 3 are: 1: ({a,b,c}), 2: ({a},{b,c}), 3: ({b,c},{a}), 4: ({b},{a,c}), 5: ({a,c},{b}), 6: ({c},{a,b}), 7: ({a,b},{c}), 8: ({a},{b},{c}), 9: ({a},{c},{b}), 10: ({b},{a},{c}), 11: ({b},{c},{a}), 12: ({c},{a},{b}), 13: ({c},{b},{a}). MAPLE A189886 := proc(n) local m, j; add(add(2^(2*m-n-j)*3^(j-m)*n! *binomial(m, j)*binomial(j, 2*j-(3*m-n)), j=0..3*m-n), m=0..n) end: seq(A189886(n), n=0..24); # Peter Luschny, May 02 2011 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(        a(n-i)*binomial(n, i), i=1..min(n, 3)))     end: seq(a(n), n=0..25);  # Alois P. Heinz, Sep 22 2016 # third Maple program: a:= n-> n! * (<<0|1|0>, <0|0|1>, <1/6|1/2|1>>^n)[3, 3]: seq(a(n), n=0..25);  # Alois P. Heinz, Sep 22 2016 MATHEMATICA Table[Sum[n!/(2^(n+j-2m)3^(m-j))*Binomial[m, j]*Binomial[j, n+2j-3m], {m, 0, n}, {j, 0, 3m-n}], {n, 0, 15}] PROG (PARI) a(n)=sum(m=0, n, sum(j=0, 3*m-n, n!/(2^(n+j-2*m) *3^(m-j)) *binomial(m, j) *binomial(j, n+2*j-3*m))); /* Joerg Arndt, May 03 2011 */ CROSSREFS Cf. A144422, A000670, A001680. Column k=3 of A276921. Sequence in context: A190878 A156154 A020094 * A009382 A110193 A038762 Adjacent sequences:  A189883 A189884 A189885 * A189887 A189888 A189889 KEYWORD nonn AUTHOR Adi Dani, Apr 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 22:29 EST 2019. Contains 329850 sequences. (Running on oeis4.)