There are no approved revisions of this page, so it may
not have been
reviewed.
This article page is a stub, please help by expanding it.
In 2004, Ben Green and Terrence Tao published a preprint[1] proving that there exist sequences of (not necessarily consecutive!) primes in arithmetic progression, such as A033168, of any length.
Sequences
A005115 Let
i, i + d, i + 2 d, ..., i + (n − 1) d |
be an
-term arithmetic progression of primes; choose the one which minimizes the last term
.
-
{2, 3, 7, 23, 29, 157, 907, 1669, 1879, 2089, 249037, 262897, 725663, 36850999, 173471351, 198793279, 4827507229, 17010526363, 83547839407, 572945039351, ...}
A113827 Initial terms associated with the arithmetic progressions of primes in A005115.
-
{2, 2, 3, 5, 5, 7, 7, 199, 199, 199, 110437, 110437, 4943, 31385539, 115453391, 53297929, 3430751869, 4808316343, 8297644387, 214861583621, 5749146449311, ...}
A093364 Gaps associated with the arithmetic progressions of primes in A005115.
-
{0, 1, 2, 6, 6, 30, 150, 210, 210, 210, 13860, 13860, 60060, 420420, 4144140, 9699690, 87297210, 717777060, 4180566390, 18846497670, 26004868890, ...}
Number of primes in AP with given gaps and starting point
The following sequences give the maximum length, i.e., number of primes in AP with a given gap and starting point:
A088420 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{3, 3, 1, 3, 3, 1, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 3, 1, 3, 3, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 3, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, ...}
A088421 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{2, 1, 5, 2, 1, 5, 2, 1, 4, 1, 1, 3, 2, 1, 1, 2, 1, 2, 2, 1, 5, 1, 1, 5, 1, 1, 4, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1, 5, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 4, ...}
A088422 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{1, 2, 3, 1, 2, 4, 1, 2, 1, 1, 2, 2, 1, 1, 6, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 3, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, ...}
A088423 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{2, 1, 4, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 5, 2, 1, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 6, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 4, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 2, 1, 1, ...}
A088424 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 4, 1, 2, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 6, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, ...}
A088425 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{2, 1, 3, 1, 1, 4, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, ...}
A088426 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, ...}
A088427 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{1, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 4, 2, 1, 3, 2, 1, 2, 1, 1, 1, ...}
A088428 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{2, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 2, 1, 3, 2, 1, 2, 2, 1, 4, 1, 1, 1, 1, 1, 1, ...}
A088429 (Maximum) number of primes in arithmetic progression starting with
and with
.
-
{1, 1, 3, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, ...}
Other sequences concerning primes in AP
A033168 Longest arithmetic progression of primes with difference 210 and minimal initial term.
-
{199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089}
This 10-tuple is row 10 of tables A086786, A113470, A133276, A133277. (add names of these sequences) [2]
See
A094220 for other initial terms of 10 primes in AP with
.
(...)
Consecutive primes in arithmetic progression (CPAP)
See also consecutive primes in arithmetic progression for many sequences concerning these more restrictive cases, in particular CPAP with given gap.
See also
Notes
- ↑ Green, Ben; Tao, Terrence (Submitted on 8 Apr 2004). “The primes contain arbitrarily long arithmetic progressions”. arΧiv:math/0404188.
- ↑ To do: add names of these sequences.
External links