This site is supported by donations to The OEIS Foundation.

Primes in arithmetic progression

From OeisWiki
Jump to: navigation, search


This article page is a stub, please help by expanding it.


In 2004, Ben Green and Terrence Tao published a preprint[1] proving that there exist sequences of (not necessarily consecutive!) primes in arithmetic progression, such as A033168, of any length.

Sequences

A005115 Let
i, i + d, i + 2 d, ..., i + (n  −  1)  d
be an
n
-term arithmetic progression of primes; choose the one which minimizes the last term
a (n) = i + (n  −  1)  d
.
{2, 3, 7, 23, 29, 157, 907, 1669, 1879, 2089, 249037, 262897, 725663, 36850999, 173471351, 198793279, 4827507229, 17010526363, 83547839407, 572945039351, ...}

A113827 Initial terms associated with the arithmetic progressions of primes in A005115.

{2, 2, 3, 5, 5, 7, 7, 199, 199, 199, 110437, 110437, 4943, 31385539, 115453391, 53297929, 3430751869, 4808316343, 8297644387, 214861583621, 5749146449311, ...}

A093364 Gaps associated with the arithmetic progressions of primes in A005115.

{0, 1, 2, 6, 6, 30, 150, 210, 210, 210, 13860, 13860, 60060, 420420, 4144140, 9699690, 87297210, 717777060, 4180566390, 18846497670, 26004868890, ...}

Number of primes in AP with given gaps and starting point

The following sequences give the maximum length, i.e., number of primes in AP with a given gap and starting point:

A088420 (Maximum) number of primes in arithmetic progression starting with
i = 3
and with
d = 2 n
.
{3, 3, 1, 3, 3, 1, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 3, 1, 3, 3, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 3, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, ...}
A088421 (Maximum) number of primes in arithmetic progression starting with
i = 5
and with
d = 2 n
.
{2, 1, 5, 2, 1, 5, 2, 1, 4, 1, 1, 3, 2, 1, 1, 2, 1, 2, 2, 1, 5, 1, 1, 5, 1, 1, 4, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1, 5, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 4, ...}
A088422 (Maximum) number of primes in arithmetic progression starting with
i = 7
and with
d = 2 n
.
{1, 2, 3, 1, 2, 4, 1, 2, 1, 1, 2, 2, 1, 1, 6, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 3, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, ...}
A088423 (Maximum) number of primes in arithmetic progression starting with
i = 11
and with
d = 2 n
.
{2, 1, 4, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 5, 2, 1, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 6, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 4, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 2, 1, 1, ...}
A088424 (Maximum) number of primes in arithmetic progression starting with
i = 13
and with
d = 2 n
.
{1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 4, 1, 2, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 6, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, ...}
A088425 (Maximum) number of primes in arithmetic progression starting with
i = 17
and with
d = 2 n
.
{2, 1, 3, 1, 1, 4, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, ...}
A088426 (Maximum) number of primes in arithmetic progression starting with
i = 19
and with
d = 2 n
.
{1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, ...}
A088427 (Maximum) number of primes in arithmetic progression starting with
i = 23
and with
d = 2 n
.
{1, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 4, 2, 1, 3, 2, 1, 2, 1, 1, 1, ...}
A088428 (Maximum) number of primes in arithmetic progression starting with
i = 29
and with
d = 2 n
.
{2, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 2, 1, 3, 2, 1, 2, 2, 1, 4, 1, 1, 1, 1, 1, 1, ...}
A088429 (Maximum) number of primes in arithmetic progression starting with
i = 31
and with
d = 2 n
.
{1, 1, 3, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, ...}

Other sequences concerning primes in AP

A033168 Longest arithmetic progression of primes with difference 210 and minimal initial term.

{199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089}

This 10-tuple is row 10 of tables A086786, A113470, A133276, A133277.  (add names of these sequences)[2]

See A094220 for other initial terms of 10 primes in AP with
d = 210
.

(...)

Consecutive primes in arithmetic progression (CPAP)

See also consecutive primes in arithmetic progression for many sequences concerning these more restrictive cases, in particular CPAP with given gap.

See also

Notes

  1. Green, Ben; Tao, Terrence (Submitted on 8 Apr 2004). “The primes contain arbitrarily long arithmetic progressions”. arΧiv:math/0404188. 
  2. To do: add names of these sequences.

External links