login
A133276
Triangle read by rows: row n gives the first arithmetic progression of n primes with minimal distance, cf. A033188.
4
2, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 7, 157, 307, 457, 607, 757, 907, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 60858179, 60860489, 60862799, 60865109, 60867419, 60869729, 60872039, 60874349, 60876659, 60878969, 60881279
OFFSET
1,1
COMMENTS
The first 10 rows (i.e., 55 terms) are the same as for A133277 (where the final term is minimal), but here a(56) = T(11,1) = 608581797 while A133277(11,1) = 110437. - M. F. Hasler, Jan 02 2020
EXAMPLE
Triangle begins:
2
2 3
3 5 7
5 11 17 23
5 11 17 23 29
7 37 67 97 127 157
7 157 307 457 607 757 907
199 409 619 829 1039 1249 1459 1669
199 409 619 829 1039 1249 1459 1669 1879
199 409 619 829 1039 1249 1459 1669 1879 2089
...
Row 10 is the same as in A086786, A113470, A133277, and listed as A033168. - M. F. Hasler, Jan 02 2020
MAPLE
AP:=proc(i, d, l) [seq(i + (j-1)*d, j=1..l )]; end;
CROSSREFS
For common differences see A033188, for initial terms see A033189.
Different from A133277 (from T(11,1) = a(56) on).
Sequence in context: A322787 A130791 A133277 * A354485 A055501 A096010
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 17 2007
STATUS
approved