This site is supported by donations to The OEIS Foundation.
Palindromic primes
From OeisWiki
p |
b |
- {2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, ...}
b |
p < b |
b + 1 |
b + 1 |
b + 1 |
x → ∞ |
- [2]
#{n ∈ P (x) | n is prime} = O #P (x)
,log log log x log log x
P (x) |
x |
b |
b |
{3, 5, 7, 17, 31, 73, 107, 127, 257, 313, 443, 1193, 1453, 1571, 1619, 1787, 1831, 1879, 4889, 5113, 5189, 5557, 5869, 5981, 6211, 6827, 7607, 7759, 7919, 8191, 17377, 18097, ...}
{2, 13, 23, 151, 173, 233, 757, 937, 1093, 1249, 1429, 1487, 1667, 1733, 1823, 1913, 1979, 2069, 8389, 9103, 10111, 12301, 14951, 16673, 16871, 18593, 60103, 60913, 61507, ...}
{2, 3, 5, 17, 29, 59, 257, 373, 409, 461, 509, 787, 839, 887, 907, 991, 4289, 4561, 5189, 5669, 5861, 6133, 6217, 6553, 6761, 7309, 7517, 7789, 7853, 12899, 13171, 13591, 14327, ...}
{2, 3, 31, 41, 67, 83, 109, 701, 911, 1091, 1171, 1277, 1327, 1667, 1847, 2083, 2213, 2293, 2423, 2473, 2579, 2659, 2789, 2969, 3049, 16001, 16651, 19531, 20431, 21481, ...}
{2, 3, 5, 7, 37, 43, 61, 67, 191, 197, 1297, 1627, 1663, 1699, 1741, 1777, 1999, 2143, 2221, 2293, 2551, 6521, 6779, 7001, 7109, 7151, 7187, 7331, 7481, 7517, 7703, 47521, ...}
{2, 3, 5, 71, 107, 157, 257, 271, 307, 2549, 2647, 2801, 3347, 3697, 3851, 4201, 4397, 4649, 4951, 5399, 5651, 5749, 5903, 6449, 6701, 7451, 7703, 8053, 8501, 8753, 9103, ...}
{2, 3, 5, 7, 73, 89, 97, 113, 211, 227, 251, 349, 373, 463, 479, 487, 503, 4289, 4481, 4937, 5393, 5521, 5657, 5849, 6761, 7537, 7993, 12547, 12611, 12739, 13003, 13259, ...}
{2, 3, 5, 7, 109, 127, 173, 191, 227, 337, 373, 419, 601, 619, 683, 701, 719, 6967, 7129, 7867, 8443, 9181, 9343, 10333, 10657, 11071, 11971, 12547, 13033, 13367, 13691, 14843, ...}
{2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, ...}
See also
Notes
- ↑ Weisstein, Eric W., Palindromic Number, from MathWorld—A Wolfram Web Resource.
- ↑ W. D. Banks, D. N. Hart, M. Sakata, “Almost All Palindromes Are Composite” Vienna, Austria: The Erwin Schrödinger International Institute for Mathematical Physics, p. 16, Theorem 5.1.[dead link]