This site is supported by donations to The OEIS Foundation.

Orderings of rational numbers

From OeisWiki
Jump to: navigation, search


This article needs more work.

Please help by expanding it!


Cantor ordering of positive rational numbers

The Cantor ordering of positive rational numbers first orders the positive rational numbers by increasing sum of numerators and denominators, then by increasing numerators, when the numerator is coprime to the denominator.

The balanced ternary digits {-1,0,+1} are represented here as {2,0,1} in the "Fermi-Dirac representation of positive rational numbers" below.

n    num+den   num	       den    Fermi-Dirac factorization   Fermi-Dirac representation
	     A020652         A020653 		
										
1       2       1       /       1       Empty product                  0
2       3       1       /       2       (1/2)                          2
3       3       2       /       1       2                              1
4       4       1       /       3       (1/3)                          20
5       4       3       /       1       3                              10
6       5       1       /       4       (1/8)*2                        20001
7       5       2       /       3       (1/3)*2                        21
8       5       3       /       2       3*(1/2)                        12
9       5       4       /       1       8*(1/2)                        10002
10      6       1       /       5       (1/5)                          200
11      6       5       /       1       5                              100
12	7	1	/	6	(1/3)*(1/2)                    22
13	7	2	/	5	(1/5)*2                        201
14	7	3	/	4	(1/8)*3*2                      20011
15	7	4	/	3	8*(1/3)*(1/2)                  10022
16	7	5	/	2	5*(1/2)                        102
17	7	6	/	1	3*2                            11
18	8	1	/	7	(1/7)                          2000
19	8	3	/	5	(1/5)*3                        210
20	8	5	/	3	5*(1/3)                        120
21	8	7	/	1	7                              1000
22	9	1	/	8	(1/8)                          20000
23	9	2	/	7	(1/7)*2                        2001
24	9	4	/	5	8*(1/5)*(1/2)                  10202
25	9	5	/	4	(1/8)*5*2                      20101
26	9	7	/	2	7*(1/2)                        1002
27	9	8	/	1	8                              10000
28	10	1	/	9	(1/27)*3                       20000000010
29	10	3	/	7	(1/7)*3                        2010
30	10	7	/	3	7*(1/3)                        1020
31	10	9	/	1	27*(1/3)                       10000000020
32	11	1	/	10	(1/5)*(1/2)                    202
33	11	2	/	9	(1/27)*3*2                     20000000011
34	11	3	/	8	(1/8)*3                        20010
35	11	4	/	7	8*(1/7)*(1/2)                  12002
36	11	5	/	6	5*(1/3)*(1/2)                  122
37	11	6	/	5	(1/5)*3*2                      211
38	11	7	/	4	(1/8)*7*2                      21001
39	11	8	/	3	8*(1/3)                        10020
40	11	9	/	2	27*(1/3)*(1/2)                 10000000022
41	11	10	/	1	5*2                            101
42	12	1	/	11	(1/11)                         200000
43	12	5	/	7	(1/7)*5                        2100
44	12	7	/	5	7*(1/5)                        1200
45	12	11	/	1	11                             100000
46	13	1	/	12	(1/8)*(1/3)*2                  20021
47	13	2	/	11	(1/11)*2                       200001
48	13	3	/	10	(1/5)*3*(1/2)                  212
49	13	4	/	9	(1/27)*8*3*(1/2)               20000010012
50	13	5	/	8	(1/8)*5                        20100
51	13	6	/	7	(1/7)*3*2                      2011
52	13	7	/	6	7*(1/3)*(1/2)                  1022
53	13	8	/	5	8*(1/5)                        10200
54	13	9	/	4	27*(1/8)*(1/3)*2               10000020021
55	13	10	/	3	5*(1/3)*2                      121
56	13	11	/	2	11*(1/2)                       100002
57	13	12	/	1	8*3*(1/2)                      10012
58	14	1	/	13	
59	14	3	/	11	
60	14	5	/	9
61	14	9	/	5
62	14	11	/	3
63	14	13	/	1
64	15	1	/	14
65	15	2	/	13
66	15	4	/	11
67	15	7	/	8
68	15	8	/	7
69	15	11	/	4
70	15	13	/	2
71	15	14	/	1
72	16	1	/	15
73	16	3	/	13
74	16	5	/	11
75	16	7	/	9
76	16	9	/	7
77	16	11	/	5
78	16	13	/	3
79	16	15	/	1
80	17	1	/	16
81	17	2	/	15
82	17	3	/	14
83	17	4	/	13
84	17	5	/	12
85	17	6	/	11
86	17	7	/	10
87	17	8	/	9
88	17	9	/	8
89	17	10	/	7
90	17	11	/	6
91	17	12	/	5
92	17	13	/	4
93	17	14	/	3
94	17	15	/	2
95	17	16	/	1
96	18	1	/	17
97	18	5	/	13
98	18	7	/	11
99	18	11	/	7
100	18	13	/	5
101	18	17	/	1
102	19	1	/	18
103	19	2	/	17
104	19	3	/	16
105	19	4	/	15
106	19	5	/	14
107	19	6	/	13
108	19	7	/	12
109	19	8	/	11
110	19	9	/	10
111	19	10	/	9
112	19	11	/	8
113	19	12	/	7
114	19	13	/	6
115	19	14	/	5
116	19	15	/	4
117	19	16	/	3
118	19	17	/	2
119	19	18	/	1
120	20	1	/	19
121	20	3	/	17
122	20	7	/	13
123	20	9	/	11
124	20	11	/	9
125	20	13	/	7
126	20	17	/	3
127	20	19	/	1
128	21	1	/	20
129	21	2	/	19
130	21	4	/	17
131	21	5	/	16
132	21	8	/	13
133	21	10	/	11
134	21	11	/	10
135	21	13	/	8
136	21	16	/	5
137	21	17	/	4
138	21	19	/	2
139	21	20	/	1
140	22	1	/	21
141	22	3	/	19
142	22	5	/	17
143	22	7	/	15
144	22	9	/	13
145	22	13	/	9
146	22	15	/	7
147	22	17	/	5
148	22	19	/	3
149	22	21	/	1
150	23	1	/	22
151	23	2	/	21
152	23	3	/	20
153	23	4	/	19
154	23	5	/	18
155	23	6	/	17
156	23	7	/	16
157	23	8	/	15
158	23	9	/	14
159	23	10	/	13
160	23	11	/	12
161	23	12	/	11
162	23	13	/	10
163	23	14	/	9
164	23	15	/	8
165	23	16	/	7
166	23	17	/	6
167	23	18	/	5
168	23	19	/	4
169	23	20	/	3
170	23	21	/	2
171	23	22	/	1
172	24	1	/	23
173	24	5	/	19
174	24	7	/	17
175	24	11	/	13
176	24	13	/	11
177	24	17	/	7
178	24	19	/	5
179	24	23	/	1
180	25	1	/	24
181	25	2	/	23
182	25	3	/	22
183	25	4	/	21
184	25	6	/	19
185	25	7	/	18
186	25	8	/	17
187	25	9	/	16
188	25	11	/	14
189	25	12	/	13
190	25	13	/	12
191	25	14	/	11
192	25	16	/	9
193	25	17	/	8
194	25	18	/	7
195	25	19	/	6
196	25	21	/	4
197	25	22	/	3
198	25	23	/	2
199	25	24	/	1
200	26	1	/	25      (1/125)*5                      2...(29 0's)...100
201	26	3	/	23
202	26	5	/	21
203	26	7	/	19
204	26	9	/	17
205	26	11	/	15
206	26	15	/	11
207	26	17	/	9
208	26	19	/	7
209	26	21	/	5
210	26	23	/	3
211	26	25	/	1       125*(1/5)                      1...(29 0's)...200


Ordering of positive rational numbers by increasing representation based on their factorization into prime powers with powers of three as exponents

The factorization of positive rational numbers into prime powers of the form p^(3^k), k >= 0, A186285) and their multiplicative inverses, allows each of those prime powers and their multiplicative inverses to be used at most once, since this corresponds to the balanced ternary representation of the exponents of the prime powers and their multiplicative inverses of the "Bose-Einstein factorization of positive rational numbers", i.e. the classic prime factorization of positive rational numbers. (Cf. A050376 comments) This is sometimes called the "Fermi-Dirac factorization of positive rational numbers" by analogy with the Fermi-Dirac distribution.

According to the Bose-Einstein distribution of particles, an unlimited number of particles may occupy the same state. On the other hand, according to the Fermi-Dirac distribution, no two particles can occupy the same state (the Pauli Exclusion Principle). Unique factorizations of the positive rational numbers (in reduced form) by primes (A000040) and their multiplicative inverses, and over terms of A186285 and their multiplicative inverses, one can compare with these two distributions in physics of particles. In the correspondence with this, the factorizations over primes and their multiplicative inverses one can call "Bose-Einstein factorization of positive rational numbers", while the factorizations over distinct terms of A186285 and their multiplicative inverses one can call "Fermi-Dirac factorization of positive rational numbers". (Cf. A050376 comments)

The numbers of the form p^(3^k), where p is prime and k >= 0, might thus be called the "Fermi-Dirac primes of the positive rational numbers", while the "Bose-Einstein primes of the positive rational numbers"]] (which are the same as the "Bose-Einstein primes of the positive integers") are the classic primes.

The "Fermi-Dirac primes of the positive integers", then are prime powers of the form p^(2^k), k >= 0. (A050376)

Here is a table of the ordering of positive rational numbers by balanced ternary representation of the "factorization" into terms of A186285 (prime powers with a power of three as exponent.)

In the following table the balanced ternary digits {-1, 0, +1} are represented as {2, 0, 1}, 2 being congruent to -1 modulo 3. Rnum and Rden are the reduced numerators and denominators, i.e. divided by GCD(Num, Den).


Ordering of positive rational numbers by increasing representation based on their factorization into prime powers with powers of three as exponents
Representation 127 125 113 109 107 103 101 97 89 83 79 73 71 67 61 59 53 47 43 41 37 31 29 27 23 19 17 13 11 8 7 5 3 2
0 0
1 1 1
2 12 1 -1
3 10 1 0
4 11 1 1
5 122 1 -1 -1
6 120 1 -1 0
7 121 1 -1 1
8 102 1 0 -1
9 100 1 0 0


Bal	Num	/	Den	GCD	Rnum	/	Rden
Tern	1		-1				
							
							
0	1	/	1	1	1	/	1
1	2	/	1	1	2	/	1
12	3	/	2	1	3	/	2
10	3	/	1	1	3	/	1
11	6	/	1	1	6	/	1
122	5	/	6	1	5	/	6
120	5	/	3	1	5	/	3
121	10	/	3	1	10	/	3
102	5	/	2	1	5	/	2
100	5	/	1	1	5	/	1
101	10	/	1	1	10	/	1
112	15	/	2	1	15	/	2
110	15	/	1	1	15	/	1
111	30	/	1	1	30	/	1
1222	7	/	30	1	7	/	30
1220	7	/	15	1	7	/	15
1221	14	/	15	1	14	/	15
1202	7	/	10	1	7	/	10
1200	7	/	5	1	7	/	5
1201	14	/	5	1	14	/	5
1212	21	/	10	1	21	/	10
1210	21	/	5	1	21	/	5
1211	42	/	5	1	42	/	5
1022	7	/	6	1	7	/	6
1020	7	/	3	1	7	/	3
1021	14	/	3	1	14	/	3
1002	7	/	2	1	7	/	2
1000	7	/	1	1	7	/	1
1001	14	/	1	1	14	/	1
1012	21	/	2	1	21	/	2
1010	21	/	1	1	21	/	1
1011	42	/	1	1	42	/	1
1122	35	/	6	1	35	/	6
1120	35	/	3	1	35	/	3
1121	70	/	3	1	70	/	3
1102	35	/	2	1	35	/	2
1100	35	/	1	1	35	/	1
1101	70	/	1	1	70	/	1
1112	105	/	2	1	105	/	2
1110	105	/	1	1	105	/	1
1111	210	/	1	1	210	/	1
12222	8	/	210	2	4	/	105
12220	8	/	105	1	8	/	105
12221	16	/	105	1	16	/	105
12202	8	/	70	2	4	/	35
12200	8	/	35	1	8	/	35
12201	16	/	35	1	16	/	35
12212	24	/	70	2	12	/	35
12210	24	/	35	1	24	/	35
12211	48	/	35	1	48	/	35
12022	8	/	42	2	4	/	21
12020	8	/	21	1	8	/	21
12021	16	/	21	1	16	/	21
12002	8	/	14	2	4	/	7
12000	8	/	7	1	8	/	7
12001	16	/	7	1	16	/	7
12012	24	/	14	2	12	/	7
12010	24	/	7	1	24	/	7
12011	48	/	7	1	48	/	7
12122	40	/	42	2	20	/	21
12120	40	/	21	1	40	/	21
12121	80	/	21	1	80	/	21
12102	40	/	14	2	20	/	7
12100	40	/	7	1	40	/	7
12101	80	/	7	1	80	/	7
12112	120	/	14	2	60	/	7
12110	120	/	7	1	120	/	7
12111	240	/	7	1	240	/	7
10222	8	/	30	2	4	/	15
10220	8	/	15	1	8	/	15
10221	16	/	15	1	16	/	15
10202	8	/	10	2	4	/	5
10200	8	/	5	1	8	/	5
10201	16	/	5	1	16	/	5
10212	24	/	10	2	12	/	5
10210	24	/	5	1	24	/	5
10211	48	/	5	1	48	/	5
10022	8	/	6	2	4	/	3
10020	8	/	3	1	8	/	3
10021	16	/	3	1	16	/	3
10002	8	/	2	2	4	/	1
10000	8	/	1	1	8	/	1
10001	16	/	1	1	16	/	1
10012	24	/	2	2	12	/	1
10010	24	/	1	1	24	/	1
10011	48	/	1	1	48	/	1
10122	40	/	6	2	20	/	3
10120	40	/	3	1	40	/	3
10121	80	/	3	1	80	/	3
10102	40	/	2	2	20	/	1
10100	40	/	1	1	40	/	1
10101	80	/	1	1	80	/	1
10112	120	/	2	2	60	/	1
10110	120	/	1	1	120	/	1
10111	240	/	1	1	240	/	1
11222	56	/	30	2	28	/	15
11220	56	/	15	1	56	/	15
11221	112	/	15	1	112	/	15
11202	56	/	10	2	28	/	5
11200	56	/	5	1	56	/	5
11201	112	/	5	1	112	/	5
11212	168	/	10	2	84	/	5
11210	168	/	5	1	168	/	5
11211	336	/	5	1	336	/	5
11022	56	/	6	2	28	/	3
11020	56	/	3	1	56	/	3
11021	112	/	3	1	112	/	3
11002	56	/	2	2	28	/	1
11000	56	/	1	1	56	/	1
11001	112	/	1	1	112	/	1
11012	168	/	2	2	84	/	1
11010	168	/	1	1	168	/	1
11011	336	/	1	1	336	/	1
11122	280	/	6	2	140	/	3
11120	280	/	3	1	280	/	3
11121	560	/	3	1	560	/	3
11102	280	/	2	2	140	/	1
11100	280	/	1	1	280	/	1
11101	560	/	1	1	560	/	1
11112	840	/	2	2	420	/	1
11110	840	/	1	1	840	/	1
11111	1680	/	1	1	1680	/	1
122222	11	/	1680	1	11	/	1680
122220	11	/	840	1	11	/	840
122221	22	/	840	2	11	/	420
122202	11	/	560	1	11	/	560
122200	11	/	280	1	11	/	280
122201	22	/	280	2	11	/	140
122212	33	/	560	1	33	/	560
122210	33	/	280	1	33	/	280
122211	66	/	280	2	33	/	140
122022	11	/	336	1	11	/	336
122020	11	/	168	1	11	/	168
122021	22	/	168	2	11	/	84
122002	11	/	112	1	11	/	112
122000	11	/	56	1	11	/	56
122001	22	/	56	2	11	/	28
122012	33	/	112	1	33	/	112
122010	33	/	56	1	33	/	56
122011	66	/	56	2	33	/	28
122122	55	/	336	1	55	/	336
122120	55	/	168	1	55	/	168
122121	110	/	168	2	55	/	84
122102	55	/	112	1	55	/	112
122100	55	/	56	1	55	/	56
122101	110	/	56	2	55	/	28
122112	165	/	112	1	165	/	112
122110	165	/	56	1	165	/	56
122111	330	/	56	2	165	/	28
120222	11	/	240	1	11	/	240
120220	11	/	120	1	11	/	120
120221	22	/	120	2	11	/	60
120202	11	/	80	1	11	/	80
120200	11	/	40	1	11	/	40
120201	22	/	40	2	11	/	20
120212	33	/	80	1	33	/	80
120210	33	/	40	1	33	/	40
120211	66	/	40	2	33	/	20
120022	11	/	48	1	11	/	48
120020	11	/	24	1	11	/	24
120021	22	/	24	2	11	/	12
120002	11	/	16	1	11	/	16
120000	11	/	8	1	11	/	8
120001	22	/	8	2	11	/	4
120012	33	/	16	1	33	/	16
120010	33	/	8	1	33	/	8
120011	66	/	8	2	33	/	4
120122	55	/	48	1	55	/	48
120120	55	/	24	1	55	/	24
120121	110	/	24	2	55	/	12
120102	55	/	16	1	55	/	16
120100	55	/	8	1	55	/	8
120101	110	/	8	2	55	/	4
120112	165	/	16	1	165	/	16
120110	165	/	8	1	165	/	8
120111	330	/	8	2	165	/	4
121222	77	/	240	1	77	/	240
121220	77	/	120	1	77	/	120
121221	154	/	120	2	77	/	60
121202	77	/	80	1	77	/	80
121200	77	/	40	1	77	/	40
121201	154	/	40	2	77	/	20
121212	231	/	80	1	231	/	80
121210	231	/	40	1	231	/	40
121211	462	/	40	2	231	/	20
121022	77	/	48	1	77	/	48
121020	77	/	24	1	77	/	24
121021	154	/	24	2	77	/	12
121002	77	/	16	1	77	/	16
121000	77	/	8	1	77	/	8
121001	154	/	8	2	77	/	4
121012	231	/	16	1	231	/	16
121010	231	/	8	1	231	/	8
121011	462	/	8	2	231	/	4
121122	385	/	48	1	385	/	48
121120	385	/	24	1	385	/	24
121121	770	/	24	2	385	/	12
121102	385	/	16	1	385	/	16
121100	385	/	8	1	385	/	8
121101	770	/	8	2	385	/	4
121112	1155	/	16	1	1155	/	16
121110	1155	/	8	1	1155	/	8
121111	2310	/	8	2	1155	/	4
102222	11	/	210	1	11	/	210
102220	11	/	105	1	11	/	105
102221	22	/	105	1	22	/	105
102202	11	/	70	1	11	/	70
102200	11	/	35	1	11	/	35
102201	22	/	35	1	22	/	35
102212	33	/	70	1	33	/	70
102210	33	/	35	1	33	/	35
102211	66	/	35	1	66	/	35
102022	11	/	42	1	11	/	42
102020	11	/	21	1	11	/	21
102021	22	/	21	1	22	/	21
102002	11	/	14	1	11	/	14
102000	11	/	7	1	11	/	7
102001	22	/	7	1	22	/	7
102012	33	/	14	1	33	/	14
102010	33	/	7	1	33	/	7
102011	66	/	7	1	66	/	7
102122	55	/	42	1	55	/	42
102120	55	/	21	1	55	/	21
102121	110	/	21	1	110	/	21
102102	55	/	14	1	55	/	14
102100	55	/	7	1	55	/	7
102101	110	/	7	1	110	/	7
102112	165	/	14	1	165	/	14
102110	165	/	7	1	165	/	7
102111	330	/	7	1	330	/	7
100222	11	/	30	1	11	/	30
100220	11	/	15	1	11	/	15
100221	22	/	15	1	22	/	15
100202	11	/	10	1	11	/	10
100200	11	/	5	1	11	/	5
100201	22	/	5	1	22	/	5
100212	33	/	10	1	33	/	10
100210	33	/	5	1	33	/	5
100211	66	/	5	1	66	/	5
100022	11	/	6	1	11	/	6
100020	11	/	3	1	11	/	3
100021	22	/	3	1	22	/	3
100002	11	/	2	1	11	/	2
100000	11	/	1	1	11	/	1
100001	22	/	1	1	22	/	1
100012	33	/	2	1	33	/	2
100010	33	/	1	1	33	/	1
100011	66	/	1	1	66	/	1
100122	55	/	6	1	55	/	6
100120	55	/	3	1	55	/	3
100121	110	/	3	1	110	/	3
100102	55	/	2	1	55	/	2
100100	55	/	1	1	55	/	1
100101	110	/	1	1	110	/	1
100112	165	/	2	1	165	/	2
100110	165	/	1	1	165	/	1
100111	330	/	1	1	330	/	1
101222	77	/	30	1	77	/	30
101220	77	/	15	1	77	/	15
101221	154	/	15	1	154	/	15
101202	77	/	10	1	77	/	10
101200	77	/	5	1	77	/	5
101201	154	/	5	1	154	/	5
101212	231	/	10	1	231	/	10
101210	231	/	5	1	231	/	5
101211	462	/	5	1	462	/	5
101022	77	/	6	1	77	/	6
101020	77	/	3	1	77	/	3
101021	154	/	3	1	154	/	3
101002	77	/	2	1	77	/	2
101000	77	/	1	1	77	/	1
101001	154	/	1	1	154	/	1
101012	231	/	2	1	231	/	2
101010	231	/	1	1	231	/	1
101011	462	/	1	1	462	/	1
101122	385	/	6	1	385	/	6
101120	385	/	3	1	385	/	3
101121	770	/	3	1	770	/	3
101102	385	/	2	1	385	/	2
101100	385	/	1	1	385	/	1
101101	770	/	1	1	770	/	1
101112	1155	/	2	1	1155	/	2
101110	1155	/	1	1	1155	/	1
101111	2310	/	1	1	2310	/	1
112222	88	/	210	2	44	/	105
112220	88	/	105	1	88	/	105
112221	176	/	105	1	176	/	105
112202	88	/	70	2	44	/	35
112200	88	/	35	1	88	/	35
112201	176	/	35	1	176	/	35
112212	264	/	70	2	132	/	35
112210	264	/	35	1	264	/	35
112211	528	/	35	1	528	/	35
112022	88	/	42	2	44	/	21
112020	88	/	21	1	88	/	21
112021	176	/	21	1	176	/	21
112002	88	/	14	2	44	/	7
112000	88	/	7	1	88	/	7
112001	176	/	7	1	176	/	7
112012	264	/	14	2	132	/	7
112010	264	/	7	1	264	/	7
112011	528	/	7	1	528	/	7
112122	440	/	42	2	220	/	21
112120	440	/	21	1	440	/	21
112121	880	/	21	1	880	/	21
112102	440	/	14	2	220	/	7
112100	440	/	7	1	440	/	7
112101	880	/	7	1	880	/	7
112112	1320	/	14	2	660	/	7
112110	1320	/	7	1	1320	/	7
112111	2640	/	7	1	2640	/	7
110222	88	/	30	2	44	/	15
110220	88	/	15	1	88	/	15
110221	176	/	15	1	176	/	15
110202	88	/	10	2	44	/	5
110200	88	/	5	1	88	/	5
110201	176	/	5	1	176	/	5
110212	264	/	10	2	132	/	5
110210	264	/	5	1	264	/	5
110211	528	/	5	1	528	/	5
110022	88	/	6	2	44	/	3
110020	88	/	3	1	88	/	3
110021	176	/	3	1	176	/	3
110002	88	/	2	2	44	/	1
110000	88	/	1	1	88	/	1
110001	176	/	1	1	176	/	1
110012	264	/	2	2	132	/	1
110010	264	/	1	1	264	/	1
110011	528	/	1	1	528	/	1
110122	440	/	6	2	220	/	3
110120	440	/	3	1	440	/	3
110121	880	/	3	1	880	/	3
110102	440	/	2	2	220	/	1
110100	440	/	1	1	440	/	1
110101	880	/	1	1	880	/	1
110112	1320	/	2	2	660	/	1
110110	1320	/	1	1	1320	/	1
110111	2640	/	1	1	2640	/	1
111222	616	/	30	2	308	/	15
111220	616	/	15	1	616	/	15
111221	1232	/	15	1	1232	/	15
111202	616	/	10	2	308	/	5
111200	616	/	5	1	616	/	5
111201	1232	/	5	1	1232	/	5
111212	1848	/	10	2	924	/	5
111210	1848	/	5	1	1848	/	5
111211	3696	/	5	1	3696	/	5
111022	616	/	6	2	308	/	3
111020	616	/	3	1	616	/	3
111021	1232	/	3	1	1232	/	3
111002	616	/	2	2	308	/	1
111000	616	/	1	1	616	/	1
111001	1232	/	1	1	1232	/	1
111012	1848	/	2	2	924	/	1
111010	1848	/	1	1	1848	/	1
111011	3696	/	1	1	3696	/	1
111122	3080	/	6	2	1540	/	3
111120	3080	/	3	1	3080	/	3
111121	6160	/	3	1	6160	/	3
111102	3080	/	2	2	1540	/	1
111100	3080	/	1	1	3080	/	1
111101	6160	/	1	1	6160	/	1
111112	9240	/	2	2	4620	/	1
111110	9240	/	1	1	9240	/	1
111111	18480	/	1	1	18480	/	1


See also

External links