The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050376 "Fermi-Dirac primes": numbers of the form p^(2^k) where p is prime and k >= 0. 236
 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every number n is a product of a unique subset of these numbers. This is sometimes called the Fermi-Dirac factorization of n (see A182979). Proof: In the prime factorization n = Product_{j>=1} p(j)^e(j) expand every exponent e(j) as binary number and pick the terms of this sequence corresponding to the positions of the ones in binary (it is clear that both n and n^2 have the same number of factors in this sequence, and that each factor appears with exponent 1 or 0). Or, a(1) = 2; for n>1, a(n) = smallest number which cannot be obtained as the product of previous terms. This is evident from the unique factorization theorem and the fact that every number can be expressed as the sum of powers of 2. - Amarnath Murthy, Jan 09 2002 Except for the first term, same as A084400. - David Wasserman, Dec 22 2004 The least number having 2^n divisors (=A037992(n)) is the product of the first n terms of this sequence according to Ramanujan. According to the Bose-Einstein distribution of particles, an unlimited number of particles may occupy the same state. On the other hand, according to the Fermi-Dirac distribution, no two particles can occupy the same state (by the Pauli exclusion principle). Unique factorizations of the positive integers by primes (A000040) and over terms of A050376 one can compare with two these distributions in physics of particles. In the correspondence with this, the factorizations over primes one can call "Bose-Einstein factorizations", while the factorizations over distinct terms of A050376 one can call "Fermi-Dirac factorizations". - Vladimir Shevelev, Apr 16 2010 The numbers of the form p^(2^k), where p is prime and k >= 0, might thus be called the "Fermi-Dirac primes", while the classic primes might be called the "Bose-Einstein primes". - Daniel Forgues, Feb 11 2011 In the theory of infinitary divisors, the most natural name of the terms is "infinitary primes" or "i-primes". Indeed, n is in the sequence, if and only if it has only two infinitary divisors. Since 1 and n are always infinitary divisors of n>1, an i-prime has no other infinitary divisors. - Vladimir Shevelev, Feb 28 2011 {a(n)} is the minimal set including all primes and closed with respect to squaring. In connection with this, note that n and n^2 have the same number of factors in their Fermi-Dirac representations. - Vladimir Shevelev, Mar 16 2012 In connection with this sequence, call an integer compact if the factors in its Fermi-Dirac factorization are pairwise coprime. The density of such integers equals (6/Pi^2)*Product_{prime p}(1+(Sum_{i>=1} p^(-(2^i-1))/(p+1))=0.872497... It is interesting that there exist only 7 compact factorials listed in A169661. - Vladimir Shevelev, Mar 17 2012 The first k terms of the sequence solve the following optimization problem: Let x_1, x_2,..., x_k be integers with the restrictions: 2<=x_1= k.  Let the goal function be Product_{i=1..k} x_i. Then the minimal value of the goal function is Product_{i=1..k} a(i). - Vladimir Shevelev, Apr 01 2012 From Joerg Arndt, Mar 11 2013: (Start) Similarly to the first comment, for the sequence "Numbers of the form p^(3^k) or p^(2*3^k) where p is prime and k >= 0" one obtains a factorization into distinct factors by using the ternary expansion of the exponents (here n and n^3 have the same number of such factors). The generalization to base r would use "Numbers of the form p^(r^k), p^(2*r^k), p^(3*r^k), ..., p^((r-1)*r^k) where p is prime and k >= 0" (here n and n^r have the same number of (distinct) factors).  (End) The first appearance of this sequence as a multiplicative basis in number theory with some new notions, formulas and theorems may have been in my 1981 paper (see the Abramovich reference). - Vladimir Shevelev, Apr 27 2014 Numbers n for which A064547(n) = 1. - Antti Karttunen, Feb 10 2016 Lexicographically earliest sequence of distinct nonnegative integers such that no term is a product of 2 or more distinct terms. Removing the distinctness requirement, the sequence becomes A000040 (the prime numbers); and the equivalent sequence where the product is of 2 distinct terms is A026416 (without its initial term, 1). - Peter Munn, Mar 05 2019 REFERENCES V. S. Abramovich, On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17 (Russian; MR0632989(83a:10003)). S. Ramanujan, Highly Composite Numbers, Collected Papers of Srinivasa Ramanujan, p. 125, Ed. G. H. Hardy et al., AMS Chelsea 2000. V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913). LINKS T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author] Simon Litsyn and Vladimir Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36. OEIS Wiki, "Fermi-Dirac representation" of n. Vladimir Shevelev, Compact integers and factorials, Acta Arith. 126 (2007), no.3, 195-236. FORMULA From Vladimir Shevelev, Mar 16 2012: (Start) Prod_(i>=1) a(i)^k_i = n!, where k_i = floor(n/a(i))-floor(n/a(i)^2)+floor(n/a(i)^3)-floor(n/a(i)^4)+... Denote by A(x) the number of terms not exceeding x. Then A(x) = pi(x)+pi(x^(1/2))+pi(x^(1/4))+pi(x^(1/8))+... Conversely, pi(x) = A(x)-A(sqrt(x)). For example, pi(37) = A(37)-A(6) = 16-4 = 12. (End) A209229(A100995(a(n))) = 1. - Reinhard Zumkeller, Mar 19 2013 A Fermi-Dirac analog of Euler product: Zeta(s) = Product_{k>=1}(1+a(k)^(-s)), for s>1. In particular, Product_{k>=1}(1+a(k)^(-2)) = Pi^2/6. - Vladimir Shevelev, Aug 31 2013 a(n) = A268385(A268392(n)). [By their definitions.] - Antti Karttunen, Feb 10 2016 A000040 union A001248 union A030514 union A179645 union A030635 union .... - R. J. Mathar, May 26 2017 EXAMPLE Prime powers which are not members of this sequence:   8 = 2^3 = 2^(1+2), 27 = 3^3 = 3^(1+2), 32 = 2^5 = 2^(1+4),   64 = 2^6 = 2^(2+4), 125 = 5^3 = 5^(1+2), 128 = 2^7 = 2^(1+2+4) "Fermi-Dirac factorizations":   6 = 2*3, 8 = 2*4, 24 = 2*3*4, 27 = 3*9, 32 = 2*16, 64 = 4*16,   108 = 3*4*9, 120 = 2*3*4*5, 121 = 121, 125 = 5*25, 128 = 2*4*16. MAPLE isA050376 := proc(n)     local f, e;     f := ifactors(n) ;     if nops(f) = 1 then         e := op(2, op(1, f)) ;         if isA000079(e) then             true;         else             false;         end if;     else         false;     end if; end proc: A050376 := proc(n)     option remember ;     local a;     if n = 1 then         2 ;     else         for a from procname(n-1)+1 do             if isA050376(a) then                 return a;             end if;         end do:     end if; end proc: # R. J. Mathar, May 26 2017 MATHEMATICA nn = 300; t = {}; k = 1; While[lim = nn^(1/k); lim > 2,  t = Join[t, Prime[Range[PrimePi[lim]]]^k]; k = 2 k]; t = Union[t] (* T. D. Noe, Apr 05 2012 *) PROG (PARI) {a(n)= local(m, c, k, p); if(n<=1, 2*(n==1), n--; c=0; m=2; while( c>valuation(n, 2)==1 is(n)=ispow2(isprimepower(n)) \\ Charles R Greathouse IV, Sep 18 2015 (Haskell) a050376 n = a050376_list !! (n-1) a050376_list = filter ((== 1) . a209229 . a100995) [1..] -- Reinhard Zumkeller, Mar 19 2013 (Scheme) (define A050376 (MATCHING-POS 1 1 (lambda (n) (= 1 (A064547 n))))) ;; Requires also my IntSeq-library. - Antti Karttunen, Feb 09 2016 (Python) from sympy import isprime, perfect_power def ok(n):   if isprime(n): return True   answer = perfect_power(n)   if not answer: return False   b, e = answer   if not isprime(b): return False   while e%2 == 0: e //= 2   return e == 1 def aupto(limit):   alst, m = [], 1   for m in range(1, limit+1):     if ok(m): alst.append(m)   return alst print(aupto(241)) # Michael S. Branicky, Feb 03 2021 CROSSREFS Cf. A000040 (primes, is a subsequence), A026416, A026477, A050377-A050380, A052330, A064547, A066724, A084400, A176699, A182979. Cf. A268388 (complement without 1). Cf. A124010, subsequence of A000028, A000961, A213925, A223490. Cf. A228520, A186945 (Fermi-Dirac analog of Ramanujan primes, A104272, and Labos primes, A080359). Cf. also A268385, A268391, A268392. Sequence in context: A026477 A079852 A084400 * A280257 A050198 A158923 Adjacent sequences:  A050373 A050374 A050375 * A050377 A050378 A050379 KEYWORD nonn,easy,nice AUTHOR Christian G. Bower, Nov 15 1999 EXTENSIONS Edited by Charles R Greathouse IV, Mar 17 2010 More examples from Daniel Forgues, Feb 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 15:39 EDT 2022. Contains 357062 sequences. (Running on oeis4.)