This site is supported by donations to The OEIS Foundation.
GCD of all sums of n consecutive Fibonacci numbers
From OeisWiki
n 
n ≥ 0 

{0, 1, 1, 2, 1, 1, 4, 1, 3, 2, 11, 1, 8, 1, 29, 2, 21, 1, 76, 1, 55, 2, 199, 1, 144, 1, 521, 2, 377, 1, 1364, 1, 987, 2, 3571, 1, 2584, 1, 9349, 2, 6765, 1, 24476, 1, 17711, 2, ...}
Note that the sum of zero numbers gives the empty sum, defined as the additive identity, i.e. 0. Also, since 0 is divisible by any nonzero integer, it has no greatest divisor: this fact is represented by assigning 0 to the GCD of 0, since 0 / 0 is undefined.
Contents
GCD of all sums of odd n consecutive Fibonacci numbers
A131534 GCD of all sums of2n + 1 
n ≥ 0 

{1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...}
a (n) = 1 + [3 ∣ (2n + 1)] 
n ≥ 0 
[·] 
GCD of all sums of even n consecutive Fibonacci numbers
A005013 GCD of all sums of2n 
n ≥ 0 

{0, 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199, 144, 521, 377, 1364, 987, 3571, 2584, 9349, 6765, 24476, 17711, 64079, 46368, 167761, 121393, 439204, 317811, 1149851, 832040, 3010349, 2178309, ...}
n 
a (n) = Fn 
n 
a (n) = Ln 
GCD of all sums of n consecutive Lucas numbers
A229339 GCD of all sums ofn 
n ≥ 1 

{1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29, 2, 105, 1, 76, 1, 275, 2, 199, 1, 720, 1, 521, 2, 1885, 1, 1364, 1, 4935, 2, 3571, 1, 12920, 1, 9349, 2, 33825, 1, 24476, 1, 88555, 2, 64079, 1, 231840, 1, ...}
GCD of all sums of odd n consecutive Lucas numbers
A131534 GCD of all sums of2n + 1 
n ≥ 0 

{1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...}
a (n) = 1 + [3 ∣ (2n + 1)] 
n ≥ 0 
[·] 
GCD of all sums of even n consecutive Lucas numbers
A203976 GCD of all sums of2n 
n ≥ 0 

{0, 1, 5, 4, 15, 11, 40, 29, 105, 76, 275, 199, 720, 521, 1885, 1364, 4935, 3571, 12920, 9349, 33825, 24476, 88555, 64079, 231840, 167761, 606965, 439204, 1589055, 1149851, 4160200, ...}
n 
a (n) = A201157(1 + n / 2) 
n 
a (n) = Ln 