login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006852
Step at which n is expelled in Kimberling's puzzle (A035486).
(Formerly M5181)
28
1, 25, 2, 4, 3, 22, 6, 8, 10, 5, 32, 83, 44, 14, 7, 66, 169, 11, 49595, 9, 69, 16, 24, 12, 43, 47, 7598, 15, 133, 109, 13, 198, 19, 33, 18, 23, 58, 65, 60, 93167, 68, 17, 1523, 39, 75, 20, 99, 34, 117, 123
OFFSET
1,2
REFERENCES
R. K. Guy, Unsolved Problems Number Theory, Sect E35.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Enrique Pérez Herrero [1..11000], Goudout Élie [11001..20000], Table of n, a(n) for n = 1..20000
D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998. [From Enrique Pérez Herrero, Mar 28 2010]
C. Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991.
FORMULA
a(n) >= floor((n+4)/3), n is expulsed from the unshuffled zone. - Enrique Pérez Herrero, Feb 25 2010
MATHEMATICA
L[n_] := L[n] = (
i = Floor[(n + 4)/3];
j = Floor[(2*n + 1)/3];
While[(i != j), j = Max[2*(i - j), 2*(j - i) - 1]; i++ ];
Return[i];
) A006852[n_] := L[n]
(* Enrique Pérez Herrero, Mar 28 2010 *)
PROG
(PARI) A006852(n)=
{
my(i, j);
i=floor((n+4)/3);
j=floor((2*n+1)/3);
while((i!=j),
j=max(2*i-2*j, -1-2*i+2*j);
i++;
); return(i); }
\\ Enrique Pérez Herrero, Feb 25 2010
CROSSREFS
Cf. A007063.
Cf. A175312. - Enrique Pérez Herrero, Mar 28 2010
Sequence in context: A040616 A040620 A040621 * A040622 A040623 A317470
KEYWORD
nonn,nice
EXTENSIONS
7593 corrected to 7598 by Hans Havermann, July 1998
STATUS
approved