OFFSET
0,2
REFERENCES
P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..500
J. M. Alonso, Growth functions of amalgams, in Alperin, ed., Arboreal Group Theory, Springer, pp. 1-34, esp. p. 32.
Index entries for linear recurrences with constant coefficients, signature (58, -1).
FORMULA
a(0)=1, a(1)=60, a(2)=3480, a(n) = 58*a(n-1)-a(n-2). - Harvey P. Dale, Dec 30 2011
From Colin Barker, Apr 16 2016: (Start)
a(n) = sqrt(15/14)*((29+2*sqrt(210))^(-n)*(-1+(29+2*sqrt(210))^(2*n))) for n>0.
a(n) = 58*a(n-1) - a(n-2) for n>2.
(End)
a(n) = -(-1)^(2^n)/2 + sqrt(30/7)*sinh(n*log(29+2*sqrt(210))) + 1/2. - Ilya Gutkovskiy, Apr 16 2016
MATHEMATICA
CoefficientList[Series[(1+2x+x^2)/(1-58x+x^2), {x, 0, 30}], x] (* or *) Join[{1}, LinearRecurrence[{58, -1}, {60, 3480}, 30]] (* Harvey P. Dale, Dec 30 2011 *)
PROG
(PARI) Vec((1+2*x+x^2)/(1-58*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved