login
A004297
Expansion of (1+2*x+x^2)/(1-58*x+x^2).
1
1, 60, 3480, 201780, 11699760, 678384300, 39334589640, 2280727814820, 132242878669920, 7667806235040540, 444600518753681400, 25779162281478480660, 1494746811806998196880, 86669535922524416938380, 5025338336694609184229160, 291382953992364808268352900
OFFSET
0,2
REFERENCES
P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.
LINKS
J. M. Alonso, Growth functions of amalgams, in Alperin, ed., Arboreal Group Theory, Springer, pp. 1-34, esp. p. 32.
FORMULA
a(0)=1, a(1)=60, a(2)=3480, a(n) = 58*a(n-1)-a(n-2). - Harvey P. Dale, Dec 30 2011
From Colin Barker, Apr 16 2016: (Start)
a(n) = sqrt(15/14)*((29+2*sqrt(210))^(-n)*(-1+(29+2*sqrt(210))^(2*n))) for n>0.
a(n) = 58*a(n-1) - a(n-2) for n>2.
(End)
a(n) = -(-1)^(2^n)/2 + sqrt(30/7)*sinh(n*log(29+2*sqrt(210))) + 1/2. - Ilya Gutkovskiy, Apr 16 2016
MATHEMATICA
CoefficientList[Series[(1+2x+x^2)/(1-58x+x^2), {x, 0, 30}], x] (* or *) Join[{1}, LinearRecurrence[{58, -1}, {60, 3480}, 30]] (* Harvey P. Dale, Dec 30 2011 *)
PROG
(PARI) Vec((1+2*x+x^2)/(1-58*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Sequence in context: A230568 A180373 A264947 * A223657 A264369 A053401
KEYWORD
nonn,easy
STATUS
approved