login
A381069
Numbers k that have a record number of divisors that have the same binary weight as k.
0
1, 2, 4, 8, 16, 32, 64, 72, 144, 288, 576, 1080, 2160, 4320, 8640, 17280, 34560, 69120, 99360, 136080, 198720, 272160, 397440, 529200, 544320, 1058400, 2116800, 3160080, 4233600, 6320160, 8467200, 12640320, 16934400, 25280640, 50561280, 76744800, 101122560, 102816000
OFFSET
1,2
COMMENTS
Indices of records of A380844, i.e., numbers k such that A380844(k) > A380844(m) for all m < k.
This sequence is infinite since A380844 is unbounded (e.g., A380844(2^n) = n+1).
Analogous to highly composite numbers (A002182) with the number of divisors with the same binary weight (A380844) instead of the number of divisors (A000005).
The corresponding record values are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, ... (see the link for more values).
MATHEMATICA
seq[lim_] := Module[{h, d, dmax = 0, s = {}}, Do[h = DigitCount[k, 2, 1]; d = DivisorSum[k, 1 &, DigitCount[#, 2, 1] == h &]; If[d > dmax, dmax = d; AppendTo[s, k]], {k, 1, lim}]; s]; seq[10^5]
PROG
(PARI) list(lim) = {my(h, d, dmax = 0); for(k = 1, lim, h = hammingweight(k); d = sumdiv(k, d, hammingweight(d) == h); if(d > dmax, dmax = d; print1(k, ", "))); }
CROSSREFS
KEYWORD
nonn,base,new
AUTHOR
Amiram Eldar, Feb 12 2025
STATUS
approved