login
A381064
Expansion of e.g.f. log(1-x)^2 * exp(-x) / 2.
0
0, 0, 1, 0, 5, 15, 94, 595, 4458, 37590, 354051, 3682646, 41935695, 518954293, 6935360496, 99553094537, 1527716784020, 24959724735564, 432572721886437, 7926615468800172, 153129657663788761, 3110514839038091643, 66278515188844197218, 1478222957082474301887
OFFSET
0,5
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * |Stirling1(k,2)|.
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*abs(stirling(k, 2, 1)));
CROSSREFS
Column k=2 of A269953.
Sequence in context: A184438 A134135 A292279 * A268565 A358197 A121869
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Feb 12 2025
STATUS
approved